-
3
-
-
84857342493
-
Using ensemble-based methods for directly estimating causal effects: An investigation of tree-based g-computation
-
P. C. Austin Using ensemble-based methods for directly estimating causal effects: An investigation of tree-based g-computation. Multivariate Behavioral Research, 47:115-135, 2012.
-
(2012)
Multivariate Behavioral Research
, vol.47
, pp. 115-135
-
-
Austin, P.C.1
-
4
-
-
0346880128
-
Identification of causal effects using instrumental variables
-
J. D. Angrist, W. Imbens, and D. B. Rubin. Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91:444-455, 1996. (Pubitemid 126412813)
-
(1996)
Journal of the American Statistical Association
, vol.91
, Issue.434
, pp. 444-455
-
-
Angrist, J.D.1
Imbens, G.W.2
Rubin, D.B.3
-
5
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
L. Breiman. Random Forests. Machine Learning, 45:5-32, 2001. (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
0023905660
-
Recpam: A computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. I.methods and program features
-
A. Ciampi, S. A. Hogg, S.McKinney, and J. Thiffault. RECPAM: a computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. I.Methods and program features. Computer Methods and Programs in Biomedicine, 26(3):239-256, 1988.
-
(1988)
Computer Methods and Programs in Biomedicine
, vol.26
, Issue.3
, pp. 239-256
-
-
Ciampi, A.1
Hogg, S.A.2
McKinney, S.3
Thiffault, J.4
-
9
-
-
0442309558
-
Causal effects in nonexperimental studies: Re-evaluating the evaluation of training programs
-
R. H. Dehejia and S. Wahba. Causal effects in nonexperimental studies: Re-evaluating the evaluation of training programs. Journal of the American Statistical Association, 94:1053-1062, 1999.
-
(1999)
Journal of the American Statistical Association
, vol.94
, pp. 1053-1062
-
-
Dehejia, R.H.1
Wahba, S.2
-
10
-
-
0022072706
-
Testing for qualitative interactions between treatment effects and patient subsets
-
M. Gail and R. Simon. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics, 41:361-372, 1985.
-
(1985)
Biometrics
, vol.41
, pp. 361-372
-
-
Gail, M.1
Simon, R.2
-
11
-
-
0000595803
-
Asymptotically efficient solutions to the classification problem
-
L. Gordon and R. Olshen. Asymptotically efficient solutions to the classification problem. The Annals of Statistics, 6:515-533, 1978.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 515-533
-
-
Gordon, L.1
Olshen, R.2
-
12
-
-
0005846282
-
Consistent nonparametric regression from recursive partitioning schemes
-
L. Gordon and R. Olshen. Consistent nonparametric regression from recursive partitioning schemes. Journal of Multivariate Analysis, 10:611-627, 1980.
-
(1980)
Journal of Multivariate Analysis
, vol.10
, pp. 611-627
-
-
Gordon, L.1
Olshen, R.2
-
13
-
-
0001743179
-
Almost surely consistent nonparametric regression from recursive partitioning schemes
-
L. Gordon and R. Olshen. Almost surely consistent nonparametric regression from recursive partitioning schemes. Journal of Multivariate Analysis, 15:147-163, 1984.
-
(1984)
Journal of Multivariate Analysis
, vol.15
, pp. 147-163
-
-
Gordon, L.1
Olshen, R.2
-
14
-
-
0000071395
-
Some distance properties of latent root and vector methods used in multivariate analysis
-
J. C. Gower. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53:325-328, 1966.
-
(1966)
Biometrika
, vol.53
, pp. 325-328
-
-
Gower, J.C.1
-
15
-
-
0038334174
-
Quantifying biases in causal models: Classical confounding vs collider-stratification bias
-
DOI 10.1097/00001648-200305000-00009
-
S. Greenland. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology, 14:300-306, 2003. (Pubitemid 40417081)
-
(2003)
Epidemiology
, vol.14
, Issue.3
, pp. 300-306
-
-
Greenland, S.1
-
16
-
-
4944223958
-
Causal inference with general treatment regimes: Generalizing the propensity score
-
DOI 10.1198/016214504000001187
-
K. Imai and D. A. van Dyk. Causal inference with general treatment regimes: generalizing the propensity score. Journal of the American Statistical Association, 99:854-866, 2004. (Pubitemid 39332867)
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.467
, pp. 854-866
-
-
Imai, K.1
Van Dyk, D.A.2
-
18
-
-
34249885738
-
Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
-
D. Ho, K. Imai, G. King, and E. Stuart. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis, 15:199-236, 2007.
-
(2007)
Political Analysis
, vol.15
, pp. 199-236
-
-
Ho, D.1
Imai, K.2
King, G.3
Stuart, E.4
-
19
-
-
79958747321
-
Matchit: Nonparametric preprocessing for parametric causal inference
-
D. Ho, K. Imai, G. King, and E. Stuart. Matchit: Nonparametric preprocessing for parametric causal inference. Journal of Statistical Software, 42(8), 2011. http://gking.harvard.edu/matchit/.
-
(2011)
Journal of Statistical Software
, vol.42
, Issue.8
-
-
Ho, D.1
Imai, K.2
King, G.3
Stuart, E.4
-
21
-
-
84973744445
-
Causal inference in retrospective studies
-
P. W. Holland and D. B. Rubin. Causal inference in retrospective studies. Evaluation Review, 12: 203-231, 1988.
-
(1988)
Evaluation Review
, vol.12
, pp. 203-231
-
-
Holland, P.W.1
Rubin, D.B.2
-
22
-
-
84947396376
-
A generalization of sampling without replacement from a finite population
-
D. Horvitz and D. Thompson. A Generalization of sampling without replacement from a finite population. Journal of the American Statistical Association, 47:663-685, 1952.
-
(1952)
Journal of the American Statistical Association
, vol.47
, pp. 663-685
-
-
Horvitz, D.1
Thompson, D.2
-
23
-
-
0000724291
-
The role of the propensity score in estimating dose-response functions
-
G. Imbens. The role of the propensity score in estimating dose-response functions. Biometrika, 87: 706-710, 2000.
-
(2000)
Biometrika
, vol.87
, pp. 706-710
-
-
Imbens, G.1
-
25
-
-
33645895554
-
The challenge of subgroup analyses -Reporting without distorting
-
S.W. Lagakos. The challenge of subgroup analyses -reporting without distorting. The New England Journal of Medicine, 354:1667-1669, 2006.
-
(2006)
The New England Journal of Medicine
, vol.354
, pp. 1667-1669
-
-
Lagakos, S.W.1
-
26
-
-
0001093804
-
Evaluating the econometric evaluations of training programs with experimental data
-
R. J. LaLonde. Evaluating the econometric evaluations of training programs with experimental data. American Economic Review, 76:604-620, 1986.
-
(1986)
American Economic Review
, vol.76
, pp. 604-620
-
-
LaLonde, R.J.1
-
28
-
-
0002690966
-
Identification And estimation of causal effects o fmultiple treatments under the conditional independence assumption
-
Ed. M. Lechnwe and F. Pfeiffer. Heidelberg: Physica
-
M. Lechner. Identification and estimation of causal effects o fmultiple treatments under the conditional independence assumption. In Econometric Evaluations of Active Labour Market Policies in Europe, Ed. M. Lechnwe and F. Pfeiffer. Heidelberg: Physica, 1999.
-
(1999)
Econometric Evaluations of Active Labour Market Policies in Europe
-
-
Lechner, M.1
-
29
-
-
74749097452
-
Improving propensity score weighting using machine learning
-
B. K. Lee, J. Lessler, and E. A. Stuart. Improving propensity score weighting using machine learning. Statistics in Medicine, 29:337-46, 2010.
-
(2010)
Statistics in Medicine
, vol.29
, pp. 337-46
-
-
Lee, B.K.1
Lessler, J.2
Stuart, E.A.3
-
30
-
-
84945116550
-
Sliced inverse regression for dimension reduction (with discussion)
-
K.-C. Li. Sliced inverse regression for dimension reduction (with discussion). Journal of the American Statistical Association, 86:316-342, 1991.
-
(1991)
Journal of the American Statistical Association
, vol.86
, pp. 316-342
-
-
Li, K.-C.1
-
31
-
-
33947141820
-
-
Beijing: Sience Press & Berlin Heidelgerg: Springer Verlag
-
Z. Y. Lin and Z. D. Bai. Probability Inequalities. Beijing: Sience Press & Berlin Heidelgerg: Springer-Verlag, 2011.
-
(2011)
Probability Inequalities
-
-
Lin, Z.Y.1
Bai, Z.D.2
-
32
-
-
4444230264
-
Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
-
DOI 10.1002/sim.1903
-
J. K. Lunceford andM. Davidian. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine, 23:2937-2960, 2004. (Pubitemid 39200133)
-
(2004)
Statistics in Medicine
, vol.23
, Issue.19
, pp. 2937-2960
-
-
Lunceford, J.K.1
Davidian, M.2
-
33
-
-
10844272276
-
Propensity score estimation with boosted regression for evaluating causal effects in observational studies
-
DOI 10.1037/1082-989X.9.4.403
-
D. F. McCaffrey, G. Ridgeway, and A. R. Morral. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9:403-425, 2004. (Pubitemid 40005040)
-
(2004)
Psychological Methods
, vol.9
, Issue.4
, pp. 403-425
-
-
McCaffrey, D.F.1
Ridgeway, G.2
Morral, A.R.3
-
35
-
-
84972526326
-
On the application of probability theory to agricultural experiments: Essay on principles section 9
-
J. Neyman. On the application of probability theory to agricultural experiments: Essay on Principles, Section 9. Translated in Statistical Science, 5:465-480, 1923.
-
(1923)
Translated In Statistical Science
, vol.5
, pp. 465-480
-
-
Neyman, J.1
-
37
-
-
0002596470
-
The analysis of randomized and non-randomized aids treatment trials using a new approach to causal inference in longitudinal studies
-
Eds: Sechrest L., Freeman H., Mulley A. Washington, D.C.: U.S. Public Health Service, National Center for Health Services Research
-
J. M. Robins. The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS. Eds: Sechrest L., Freeman H., Mulley A. Washington, D.C.: U.S. Public Health Service, National Center for Health Services Research, pp. 113-159, 1989.
-
(1989)
Health Service Research Methodology: A Focus on AIDS
, pp. 113-159
-
-
Robins, J.M.1
-
38
-
-
0003135327
-
Marginal structural models versus structural nested models as tools for causal inference
-
Eds: M.E. Halloran and D. Berry, IMA NY: Springer-Verlag
-
J. M. Robins. Marginal structural models versus structural nested models as tools for causal inference. In Statistical Models in Epidemiology: The Environment and Clinical Trials. Eds: M.E. Halloran and D. Berry, IMA Volume 116, NY: Springer-Verlag, pp. 95-134, 1999.
-
(1999)
Statistical Models in Epidemiology: The Environment and Clinical Trials
, vol.116
, pp. 95-134
-
-
Robins, J.M.1
-
41
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70:41-55, 1983.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
43
-
-
58149417330
-
Estimating causal effects of treatments in randomized and nonrandomized studies
-
D. B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66:688-701, 1974.
-
(1974)
Journal of Educational Psychology
, vol.66
, pp. 688-701
-
-
Rubin, D.B.1
-
44
-
-
0017133178
-
Inference and missing data
-
D. B. Rubin. Inference and missing data. Biometrika, 63:581-592, 1976.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
45
-
-
0001599001
-
Assignment of treatment group on the basis of a covariate
-
D. B. Rubin. Assignment of treatment group on the basis of a covariate. Journal of Educational Statistics, 2:1-26, 1977.
-
(1977)
Journal of Educational Statistics
, vol.2
, pp. 1-26
-
-
Rubin, D.B.1
-
46
-
-
0002531157
-
Bayesian inference for causal effects: The role of randomization
-
D. B. Rubin. Bayesian inference for causal effects: The role of randomization. The Annals of Statistics, 7:34-58, 1978.
-
(1978)
The Annals of Statistics
, vol.7
, pp. 34-58
-
-
Rubin, D.B.1
-
47
-
-
14944344423
-
Causal inference using potential outcomes: Design, modeling, decisions
-
DOI 10.1198/016214504000001880
-
D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100:322-331, 2005. (Pubitemid 40366841)
-
(2005)
Journal of the American Statistical Association
, vol.100
, Issue.469
, pp. 322-331
-
-
Rubin, D.B.1
-
48
-
-
57749105474
-
Average causal effects from nonrandomized studies: A practical guide and simulated example
-
J. L. Schafer and J. Kang. Average causal effects from nonrandomized studies: a practical guide and simulated example. Psychological Methods, 13:279-313, 2008.
-
(2008)
Psychological Methods
, vol.13
, pp. 279-313
-
-
Schafer, J.L.1
Kang, J.2
-
49
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6: 461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
51
-
-
54249144090
-
Complete identification methods for the causal hierarchy
-
I. Shpitser and J. Pearl. Complete identification methods for the causal hierarchy. Journal of Machine Learning Research, 9:1941-1979, 2008.
-
(2008)
Journal Of Machine Learning Research
, vol.9
, pp. 1941-1979
-
-
Shpitser, I.1
Pearl, J.2
-
52
-
-
79953852789
-
Implementation of g-computation on a simulated data set: Demonstration of a causal inference technique
-
J. M. Snowden, S. Rose, and K. M. Mortimer. Implementation of g-computation on a simulated data set: Demonstration of a causal inference technique. American Journal of Epidemiology, 173:731-738, 2011.
-
(2011)
American Journal of Epidemiology
, vol.173
, pp. 731-738
-
-
Snowden, J.M.1
Rose, S.2
Mortimer, K.M.3
-
53
-
-
0003614273
-
-
2nd Edition. The MIT Press
-
P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search. 2nd Edition. The MIT Press, 2001.
-
(2001)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
-
54
-
-
61749086397
-
Subgroup analysis via recursive partitioning
-
X. G. Su, C.-L. Tsai, H. Wang, D. M. Nickerson, and B. G. Li. Subgroup analysis via recursive partitioning. Journal of Machine Learning Research, 10: 141-158, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 141-158
-
-
Su, X.G.1
Tsai, C.-L.2
Wang, H.3
Nickerson, D.M.4
Li, B.G.5
-
55
-
-
4344681291
-
Maximum likelihood regression trees
-
DOI 10.1198/106186004X2165
-
X. G. Su, M. Wang, and J. Fan. Maximum likelihood regression trees. Journal of Computational and Graphical Statistics, 13:586-598, 2004. (Pubitemid 39159773)
-
(2004)
Journal of Computational and Graphical Statistics
, vol.13
, Issue.3
, pp. 586-598
-
-
Su, X.1
Wang, M.2
Fan, J.3
-
56
-
-
0035532141
-
Estimating the number of clusters in a data set via the gap statistic
-
R. Tibshirani, G.Walther, and T. Hastie. Estimating the number of clusters in a data set via the GAP statistic. Journal of the Royal Statistical Society, Series B, 63: 411-423, 2001.
-
(2001)
Journal of the Royal Statistical Society, Series B
, vol.63
, pp. 411-423
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
57
-
-
84870818478
-
-
Research paper, Office of SurveyMethods Research (OSMR), U.S. Bureau of Labor Statistics
-
D. Toth and J. L. Eltinge. Building consistent regression trees from complex sample data. Research paper, Office of SurveyMethods Research (OSMR), U.S. Bureau of Labor Statistics, 2010. http://www.bls.gov/osmr/pdf/st100010.pdf.
-
(2010)
Building Consistent Regression Trees from Complex Sample Data
-
-
Toth, D.1
Eltinge, J.L.2
-
60
-
-
70349244871
-
-
U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 213
-
M. J. van der Laan and D. Rubin. Targeted maximum likelihood learning. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 213, 2006. http://biostats.bepress. com/ucbbiostat/paper213.
-
(2006)
Targeted Maximum Likelihood Learning
-
-
Van Der Laan, M.J.1
Rubin, D.2
-
61
-
-
34547924073
-
Four types of effect modification: A classification based on directed acyclic graphs
-
DOI 10.1097/EDE.0b013e318127181b, PII 0000164820070900000006
-
T. J. VanderWeele and J. M. Robins. Four types of effect modification: A classification based on directed acyclic graphs. Epidemiology, 18:561-568, 2007. (Pubitemid 47263028)
-
(2007)
Epidemiology
, vol.18
, Issue.5
, pp. 561-568
-
-
VanderWeele, T.J.1
Robins, J.M.2
-
62
-
-
73849140389
-
On the distinction between interaction and effect modification
-
T. J. VanderWeele. On the distinction between interaction and effect modification. Epidemiology, 20:863-871, 2009.
-
(2009)
Epidemiology
, vol.20
, pp. 863-871
-
-
Vander Weele, T.J.1
-
64
-
-
78651282047
-
Consistent selection of the number of clusters via cross validation
-
J. Wang. Consistent selection of the number of clusters via cross validation. Biometrika, 97:893-904, 2010.
-
(2010)
Biometrika
, vol.97
, pp. 893-904
-
-
Wang, J.1
|