메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 2955-2994

Facilitating score and causal inference trees for large observational studies

Author keywords

CART; Causal inference; Confounding; Interaction; Observational study; Personalized medicine; Recursive partitioning

Indexed keywords

CART; CAUSAL INFERENCE; CONFOUNDING; INTERACTION; OBSERVATIONAL STUDY; PERSONALIZED MEDICINES; RECURSIVE PARTITIONING;

EID: 84869413638     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (64)

References (64)
  • 3
    • 84857342493 scopus 로고    scopus 로고
    • Using ensemble-based methods for directly estimating causal effects: An investigation of tree-based g-computation
    • P. C. Austin Using ensemble-based methods for directly estimating causal effects: An investigation of tree-based g-computation. Multivariate Behavioral Research, 47:115-135, 2012.
    • (2012) Multivariate Behavioral Research , vol.47 , pp. 115-135
    • Austin, P.C.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman. Random Forests. Machine Learning, 45:5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 0023905660 scopus 로고
    • Recpam: A computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. I.methods and program features
    • A. Ciampi, S. A. Hogg, S.McKinney, and J. Thiffault. RECPAM: a computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. I.Methods and program features. Computer Methods and Programs in Biomedicine, 26(3):239-256, 1988.
    • (1988) Computer Methods and Programs in Biomedicine , vol.26 , Issue.3 , pp. 239-256
    • Ciampi, A.1    Hogg, S.A.2    McKinney, S.3    Thiffault, J.4
  • 9
    • 0442309558 scopus 로고    scopus 로고
    • Causal effects in nonexperimental studies: Re-evaluating the evaluation of training programs
    • R. H. Dehejia and S. Wahba. Causal effects in nonexperimental studies: Re-evaluating the evaluation of training programs. Journal of the American Statistical Association, 94:1053-1062, 1999.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1053-1062
    • Dehejia, R.H.1    Wahba, S.2
  • 10
    • 0022072706 scopus 로고
    • Testing for qualitative interactions between treatment effects and patient subsets
    • M. Gail and R. Simon. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics, 41:361-372, 1985.
    • (1985) Biometrics , vol.41 , pp. 361-372
    • Gail, M.1    Simon, R.2
  • 11
    • 0000595803 scopus 로고
    • Asymptotically efficient solutions to the classification problem
    • L. Gordon and R. Olshen. Asymptotically efficient solutions to the classification problem. The Annals of Statistics, 6:515-533, 1978.
    • (1978) The Annals of Statistics , vol.6 , pp. 515-533
    • Gordon, L.1    Olshen, R.2
  • 12
    • 0005846282 scopus 로고
    • Consistent nonparametric regression from recursive partitioning schemes
    • L. Gordon and R. Olshen. Consistent nonparametric regression from recursive partitioning schemes. Journal of Multivariate Analysis, 10:611-627, 1980.
    • (1980) Journal of Multivariate Analysis , vol.10 , pp. 611-627
    • Gordon, L.1    Olshen, R.2
  • 13
    • 0001743179 scopus 로고
    • Almost surely consistent nonparametric regression from recursive partitioning schemes
    • L. Gordon and R. Olshen. Almost surely consistent nonparametric regression from recursive partitioning schemes. Journal of Multivariate Analysis, 15:147-163, 1984.
    • (1984) Journal of Multivariate Analysis , vol.15 , pp. 147-163
    • Gordon, L.1    Olshen, R.2
  • 14
    • 0000071395 scopus 로고
    • Some distance properties of latent root and vector methods used in multivariate analysis
    • J. C. Gower. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53:325-328, 1966.
    • (1966) Biometrika , vol.53 , pp. 325-328
    • Gower, J.C.1
  • 15
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: Classical confounding vs collider-stratification bias
    • DOI 10.1097/00001648-200305000-00009
    • S. Greenland. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology, 14:300-306, 2003. (Pubitemid 40417081)
    • (2003) Epidemiology , vol.14 , Issue.3 , pp. 300-306
    • Greenland, S.1
  • 16
    • 4944223958 scopus 로고    scopus 로고
    • Causal inference with general treatment regimes: Generalizing the propensity score
    • DOI 10.1198/016214504000001187
    • K. Imai and D. A. van Dyk. Causal inference with general treatment regimes: generalizing the propensity score. Journal of the American Statistical Association, 99:854-866, 2004. (Pubitemid 39332867)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.467 , pp. 854-866
    • Imai, K.1    Van Dyk, D.A.2
  • 18
    • 34249885738 scopus 로고    scopus 로고
    • Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
    • D. Ho, K. Imai, G. King, and E. Stuart. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis, 15:199-236, 2007.
    • (2007) Political Analysis , vol.15 , pp. 199-236
    • Ho, D.1    Imai, K.2    King, G.3    Stuart, E.4
  • 19
    • 79958747321 scopus 로고    scopus 로고
    • Matchit: Nonparametric preprocessing for parametric causal inference
    • D. Ho, K. Imai, G. King, and E. Stuart. Matchit: Nonparametric preprocessing for parametric causal inference. Journal of Statistical Software, 42(8), 2011. http://gking.harvard.edu/matchit/.
    • (2011) Journal of Statistical Software , vol.42 , Issue.8
    • Ho, D.1    Imai, K.2    King, G.3    Stuart, E.4
  • 21
    • 84973744445 scopus 로고
    • Causal inference in retrospective studies
    • P. W. Holland and D. B. Rubin. Causal inference in retrospective studies. Evaluation Review, 12: 203-231, 1988.
    • (1988) Evaluation Review , vol.12 , pp. 203-231
    • Holland, P.W.1    Rubin, D.B.2
  • 22
    • 84947396376 scopus 로고
    • A generalization of sampling without replacement from a finite population
    • D. Horvitz and D. Thompson. A Generalization of sampling without replacement from a finite population. Journal of the American Statistical Association, 47:663-685, 1952.
    • (1952) Journal of the American Statistical Association , vol.47 , pp. 663-685
    • Horvitz, D.1    Thompson, D.2
  • 23
    • 0000724291 scopus 로고    scopus 로고
    • The role of the propensity score in estimating dose-response functions
    • G. Imbens. The role of the propensity score in estimating dose-response functions. Biometrika, 87: 706-710, 2000.
    • (2000) Biometrika , vol.87 , pp. 706-710
    • Imbens, G.1
  • 25
    • 33645895554 scopus 로고    scopus 로고
    • The challenge of subgroup analyses -Reporting without distorting
    • S.W. Lagakos. The challenge of subgroup analyses -reporting without distorting. The New England Journal of Medicine, 354:1667-1669, 2006.
    • (2006) The New England Journal of Medicine , vol.354 , pp. 1667-1669
    • Lagakos, S.W.1
  • 26
    • 0001093804 scopus 로고
    • Evaluating the econometric evaluations of training programs with experimental data
    • R. J. LaLonde. Evaluating the econometric evaluations of training programs with experimental data. American Economic Review, 76:604-620, 1986.
    • (1986) American Economic Review , vol.76 , pp. 604-620
    • LaLonde, R.J.1
  • 28
    • 0002690966 scopus 로고    scopus 로고
    • Identification And estimation of causal effects o fmultiple treatments under the conditional independence assumption
    • Ed. M. Lechnwe and F. Pfeiffer. Heidelberg: Physica
    • M. Lechner. Identification and estimation of causal effects o fmultiple treatments under the conditional independence assumption. In Econometric Evaluations of Active Labour Market Policies in Europe, Ed. M. Lechnwe and F. Pfeiffer. Heidelberg: Physica, 1999.
    • (1999) Econometric Evaluations of Active Labour Market Policies in Europe
    • Lechner, M.1
  • 29
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • B. K. Lee, J. Lessler, and E. A. Stuart. Improving propensity score weighting using machine learning. Statistics in Medicine, 29:337-46, 2010.
    • (2010) Statistics in Medicine , vol.29 , pp. 337-46
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 30
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction (with discussion)
    • K.-C. Li. Sliced inverse regression for dimension reduction (with discussion). Journal of the American Statistical Association, 86:316-342, 1991.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 316-342
    • Li, K.-C.1
  • 31
    • 33947141820 scopus 로고    scopus 로고
    • Beijing: Sience Press & Berlin Heidelgerg: Springer Verlag
    • Z. Y. Lin and Z. D. Bai. Probability Inequalities. Beijing: Sience Press & Berlin Heidelgerg: Springer-Verlag, 2011.
    • (2011) Probability Inequalities
    • Lin, Z.Y.1    Bai, Z.D.2
  • 32
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • DOI 10.1002/sim.1903
    • J. K. Lunceford andM. Davidian. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine, 23:2937-2960, 2004. (Pubitemid 39200133)
    • (2004) Statistics in Medicine , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 33
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • DOI 10.1037/1082-989X.9.4.403
    • D. F. McCaffrey, G. Ridgeway, and A. R. Morral. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9:403-425, 2004. (Pubitemid 40005040)
    • (2004) Psychological Methods , vol.9 , Issue.4 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 35
    • 84972526326 scopus 로고
    • On the application of probability theory to agricultural experiments: Essay on principles section 9
    • J. Neyman. On the application of probability theory to agricultural experiments: Essay on Principles, Section 9. Translated in Statistical Science, 5:465-480, 1923.
    • (1923) Translated In Statistical Science , vol.5 , pp. 465-480
    • Neyman, J.1
  • 37
    • 0002596470 scopus 로고
    • The analysis of randomized and non-randomized aids treatment trials using a new approach to causal inference in longitudinal studies
    • Eds: Sechrest L., Freeman H., Mulley A. Washington, D.C.: U.S. Public Health Service, National Center for Health Services Research
    • J. M. Robins. The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS. Eds: Sechrest L., Freeman H., Mulley A. Washington, D.C.: U.S. Public Health Service, National Center for Health Services Research, pp. 113-159, 1989.
    • (1989) Health Service Research Methodology: A Focus on AIDS , pp. 113-159
    • Robins, J.M.1
  • 38
    • 0003135327 scopus 로고    scopus 로고
    • Marginal structural models versus structural nested models as tools for causal inference
    • Eds: M.E. Halloran and D. Berry, IMA NY: Springer-Verlag
    • J. M. Robins. Marginal structural models versus structural nested models as tools for causal inference. In Statistical Models in Epidemiology: The Environment and Clinical Trials. Eds: M.E. Halloran and D. Berry, IMA Volume 116, NY: Springer-Verlag, pp. 95-134, 1999.
    • (1999) Statistical Models in Epidemiology: The Environment and Clinical Trials , vol.116 , pp. 95-134
    • Robins, J.M.1
  • 41
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70:41-55, 1983.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 43
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • D. B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66:688-701, 1974.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 44
    • 0017133178 scopus 로고
    • Inference and missing data
    • D. B. Rubin. Inference and missing data. Biometrika, 63:581-592, 1976.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 45
    • 0001599001 scopus 로고
    • Assignment of treatment group on the basis of a covariate
    • D. B. Rubin. Assignment of treatment group on the basis of a covariate. Journal of Educational Statistics, 2:1-26, 1977.
    • (1977) Journal of Educational Statistics , vol.2 , pp. 1-26
    • Rubin, D.B.1
  • 46
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • D. B. Rubin. Bayesian inference for causal effects: The role of randomization. The Annals of Statistics, 7:34-58, 1978.
    • (1978) The Annals of Statistics , vol.7 , pp. 34-58
    • Rubin, D.B.1
  • 47
    • 14944344423 scopus 로고    scopus 로고
    • Causal inference using potential outcomes: Design, modeling, decisions
    • DOI 10.1198/016214504000001880
    • D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100:322-331, 2005. (Pubitemid 40366841)
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.469 , pp. 322-331
    • Rubin, D.B.1
  • 48
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from nonrandomized studies: A practical guide and simulated example
    • J. L. Schafer and J. Kang. Average causal effects from nonrandomized studies: a practical guide and simulated example. Psychological Methods, 13:279-313, 2008.
    • (2008) Psychological Methods , vol.13 , pp. 279-313
    • Schafer, J.L.1    Kang, J.2
  • 49
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6: 461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 51
    • 54249144090 scopus 로고    scopus 로고
    • Complete identification methods for the causal hierarchy
    • I. Shpitser and J. Pearl. Complete identification methods for the causal hierarchy. Journal of Machine Learning Research, 9:1941-1979, 2008.
    • (2008) Journal Of Machine Learning Research , vol.9 , pp. 1941-1979
    • Shpitser, I.1    Pearl, J.2
  • 52
    • 79953852789 scopus 로고    scopus 로고
    • Implementation of g-computation on a simulated data set: Demonstration of a causal inference technique
    • J. M. Snowden, S. Rose, and K. M. Mortimer. Implementation of g-computation on a simulated data set: Demonstration of a causal inference technique. American Journal of Epidemiology, 173:731-738, 2011.
    • (2011) American Journal of Epidemiology , vol.173 , pp. 731-738
    • Snowden, J.M.1    Rose, S.2    Mortimer, K.M.3
  • 57
    • 84870818478 scopus 로고    scopus 로고
    • Research paper, Office of SurveyMethods Research (OSMR), U.S. Bureau of Labor Statistics
    • D. Toth and J. L. Eltinge. Building consistent regression trees from complex sample data. Research paper, Office of SurveyMethods Research (OSMR), U.S. Bureau of Labor Statistics, 2010. http://www.bls.gov/osmr/pdf/st100010.pdf.
    • (2010) Building Consistent Regression Trees from Complex Sample Data
    • Toth, D.1    Eltinge, J.L.2
  • 60
    • 70349244871 scopus 로고    scopus 로고
    • U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 213
    • M. J. van der Laan and D. Rubin. Targeted maximum likelihood learning. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 213, 2006. http://biostats.bepress. com/ucbbiostat/paper213.
    • (2006) Targeted Maximum Likelihood Learning
    • Van Der Laan, M.J.1    Rubin, D.2
  • 61
    • 34547924073 scopus 로고    scopus 로고
    • Four types of effect modification: A classification based on directed acyclic graphs
    • DOI 10.1097/EDE.0b013e318127181b, PII 0000164820070900000006
    • T. J. VanderWeele and J. M. Robins. Four types of effect modification: A classification based on directed acyclic graphs. Epidemiology, 18:561-568, 2007. (Pubitemid 47263028)
    • (2007) Epidemiology , vol.18 , Issue.5 , pp. 561-568
    • VanderWeele, T.J.1    Robins, J.M.2
  • 62
    • 73849140389 scopus 로고    scopus 로고
    • On the distinction between interaction and effect modification
    • T. J. VanderWeele. On the distinction between interaction and effect modification. Epidemiology, 20:863-871, 2009.
    • (2009) Epidemiology , vol.20 , pp. 863-871
    • Vander Weele, T.J.1
  • 64
    • 78651282047 scopus 로고    scopus 로고
    • Consistent selection of the number of clusters via cross validation
    • J. Wang. Consistent selection of the number of clusters via cross validation. Biometrika, 97:893-904, 2010.
    • (2010) Biometrika , vol.97 , pp. 893-904
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.