메뉴 건너뛰기




Volumn 113, Issue 27, 2016, Pages 7353-7360

Recursive partitioning for heterogeneous causal effects

Author keywords

Causal inference; Cross validation; Heterogeneous treatment effects; Potential outcomes; Supervised machine learning

Indexed keywords

ARTICLE; CONFIDENCE INTERVAL; CONTROLLED STUDY; EXPERIMENTAL STUDY; HETEROGENEOUS CAUSAL EFFECT; MACHINE LEARNING; OBSERVATIONAL STUDY; PREDICTION; PRIORITY JOURNAL; REWARD; SIMULATION; COMPUTER SIMULATION; METHODOLOGY; STATISTICS; THEORETICAL MODEL;

EID: 84977271090     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1510489113     Document Type: Article
Times cited : (1306)

References (31)
  • 1
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and non-randomized studies
    • Rubin D (1974) Estimating causal effects of treatments in randomized and non-randomized studies. Educ Psychol 66(5):688-701.
    • (1974) Educ Psychol , vol.66 , Issue.5 , pp. 688-701
    • Rubin, D.1
  • 2
    • 84920420698 scopus 로고
    • Statistics and causal inference (with.discussion)
    • Holland P (1986) Statistics and causal inference (with discussion). J Am Stat Assoc 81(396):945-970.
    • (1986) J Am Stat Assoc , vol.81 , Issue.396 , pp. 945-970
    • Holland, P.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58(1):267-288.
    • (1996) J R Stat Soc B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 10
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • Rubin D (1978) Bayesian inference for causal effects: The role of randomization. Ann Stat 6(1):34-58.
    • (1978) Ann Stat , vol.6 , Issue.1 , pp. 34-58
    • Rubin, D.1
  • 11
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum P, Rubin D (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41-55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 12
    • 33645024678 scopus 로고    scopus 로고
    • Large sample properties of matching estimators for average treatment effects
    • Abadie A, Imbens G (2006) Large sample properties of matching estimators for average treatment effects. Econometrica 74(1):235-267.
    • (2006) Econometrica , vol.74 , Issue.1 , pp. 235-267
    • Abadie, A.1    Imbens, G.2
  • 18
    • 84943261253 scopus 로고    scopus 로고
    • Post hoc subgroups in clinical trials: Anathema or analytics?
    • Weisberg HI, Pontes VP (2015) Post hoc subgroups in clinical trials: Anathema or analytics? Clin Trials 12(4):357-364.
    • (2015) Clin Trials , vol.12 , Issue.4 , pp. 357-364
    • Weisberg, H.I.1    Pontes, V.P.2
  • 21
    • 0141495120 scopus 로고    scopus 로고
    • Efficient estimation of average treatment effects using the estimated propensity score
    • Hirano K, Imbens G, Ridder G (2003) Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71(4):1161-1189.
    • (2003) Econometrica , vol.71 , Issue.4 , pp. 1161-1189
    • Hirano, K.1    Imbens, G.2    Ridder, G.3
  • 22
    • 49749093806 scopus 로고    scopus 로고
    • Nonparametric tests for treatment effect heterogeneity
    • Crump R, Hotz J, Imbens G, Mitnik O (2008) Nonparametric tests for treatment effect heterogeneity. Rev Econ Stat 90(3):389-405.
    • (2008) Rev Econ Stat , vol.90 , Issue.3 , pp. 389-405
    • Crump, R.1    Hotz, J.2    Imbens, G.3    Mitnik, O.4
  • 23
    • 84919797419 scopus 로고    scopus 로고
    • A simple method for estimating interactions between a treatment and a large number of covariates
    • Tian L, Alizadeh AA, Gentles AJ, Tibshirani R (2014) A simple method for estimating interactions between a treatment and a large number of covariates. J Am Stat Assoc 109(508):1517-1532.
    • (2014) J Am Stat Assoc , vol.109 , Issue.508 , pp. 1517-1532
    • Tian, L.1    Alizadeh, A.A.2    Gentles, A.J.3    Tibshirani, R.4
  • 24
    • 80053563163 scopus 로고    scopus 로고
    • Subgroup identification from randomized clinical trial data
    • Foster JC, Taylor JM, Ruberg SJ (2011) Subgroup identification from randomized clinical trial data. Stat Med 30(24):2867-2880.
    • (2011) Stat Med , vol.30 , Issue.24 , pp. 2867-2880
    • Foster, J.C.1    Taylor, J.M.2    Ruberg, S.J.3
  • 25
    • 84876042107 scopus 로고    scopus 로고
    • Estimating treatment effect heterogeneity in randomized program evaluation
    • Imai K, Ratkovic M (2013) Estimating treatment effect heterogeneity in randomized program evaluation. Ann Appl Stat 7(1):443-470.
    • (2013) Ann Appl Stat , vol.7 , Issue.1 , pp. 443-470
    • Imai, K.1    Ratkovic, M.2
  • 26
    • 84867424852 scopus 로고    scopus 로고
    • Modeling heterogeneous treatment effects in survey experiments with Bayesian additive regression trees
    • Green D, Kern H (2012) Modeling heterogeneous treatment effects in survey experiments with Bayesian additive regression trees. Public Opin Q 76(3):491-511.
    • (2012) Public Opin Q , vol.76 , Issue.3 , pp. 491-511
    • Green, D.1    Kern, H.2
  • 29
    • 82255183905 scopus 로고    scopus 로고
    • Optimizing randomized trial designs to distinguish which subpopulations benefit from treatment
    • Rosenblum M, Van der Laan MJ (2011) Optimizing randomized trial designs to distinguish which subpopulations benefit from treatment. Biometrika 98(4):845-860.
    • (2011) Biometrika , vol.98 , Issue.4 , pp. 845-860
    • Rosenblum, M.1    Van Der Laan, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.