-
1
-
-
84977182992
-
-
Annual Energy Outlook 2014 Early Release Overview.
-
[1] U.S. EIA, Annual Energy Outlook 2014 Early Release Overview. (2014).
-
(2014)
-
-
EIA, U.S.1
-
2
-
-
85027951993
-
Segmentation and classification of commercial building occupants by energy-use efficiency and predictability
-
[2] Gulbinas, R., Khosrowpour, A., Taylor, J.E., Segmentation and classification of commercial building occupants by energy-use efficiency and predictability. IEEE Trans. Smart Grid, 6(3), 2014.
-
(2014)
IEEE Trans. Smart Grid
, vol.6
, Issue.3
-
-
Gulbinas, R.1
Khosrowpour, A.2
Taylor, J.E.3
-
3
-
-
84892577847
-
Household energy consumption segmentation using hourly data
-
[3] Kwac, J., Flora, J., Rajagopal, R., Household energy consumption segmentation using hourly data. IEEE Trans. Smart Grids 5:1 (2014), 420–430.
-
(2014)
IEEE Trans. Smart Grids
, vol.5
, Issue.1
, pp. 420-430
-
-
Kwac, J.1
Flora, J.2
Rajagopal, R.3
-
4
-
-
84906487523
-
Assessing occupants’ energy load variation through existing wireless network infrastructure in commercial and educational buildings
-
[4] Chen, J., Ahn, C., Assessing occupants’ energy load variation through existing wireless network infrastructure in commercial and educational buildings. Energy Build., 2014.
-
(2014)
Energy Build.
-
-
Chen, J.1
Ahn, C.2
-
5
-
-
84894129540
-
Recognizing energy-related activities using sensors commonly installed in office buildings
-
[5] Milenkovic, M., Amft, O., Recognizing energy-related activities using sensors commonly installed in office buildings. Procedia Comput. Sci. 19 (2013), 669–677.
-
(2013)
Procedia Comput. Sci.
, vol.19
, pp. 669-677
-
-
Milenkovic, M.1
Amft, O.2
-
7
-
-
84857995866
-
The impact of consumers’ feedback preferences on domestic electricity consumption
-
[7] Vassileva, I., et al. The impact of consumers’ feedback preferences on domestic electricity consumption. Appl. Energy 93 (2012), 575–582.
-
(2012)
Appl. Energy
, vol.93
, pp. 575-582
-
-
Vassileva, I.1
-
8
-
-
84870679467
-
Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term
-
[8] Hargreaves, T., Nye, M., Burgess, J., Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy 52:0 (2013), 126–134.
-
(2013)
Energy Policy
, vol.52
, pp. 126-134
-
-
Hargreaves, T.1
Nye, M.2
Burgess, J.3
-
9
-
-
84883272483
-
WATTSBurning: design and evaluation of an innovative eco-feedback system
-
Springer
-
[9] Quintal, F., et al. WATTSBurning: design and evaluation of an innovative eco-feedback system. Human-Computer Interaction–INTERACT, 2013, 2013, Springer, 453–470.
-
(2013)
Human-Computer Interaction–INTERACT, 2013
, pp. 453-470
-
-
Quintal, F.1
-
10
-
-
77954014963
-
One size does not fit all: applying the transtheoretical model to energy feedback technology design
-
[10] He, H.A., Greenberg, S., Huang, E.M., One size does not fit all: applying the transtheoretical model to energy feedback technology design. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2010.
-
(2010)
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM
-
-
He, H.A.1
Greenberg, S.2
Huang, E.M.3
-
11
-
-
77956200080
-
Home energy monitors: impact over the medium-term
-
[11] van Dam, S.S., Bakker, C.A., van Hal, J.D.M., Home energy monitors: impact over the medium-term. Build. Res. Inf. 38:5 (2010), 458–469.
-
(2010)
Build. Res. Inf.
, vol.38
, Issue.5
, pp. 458-469
-
-
van Dam, S.S.1
Bakker, C.A.2
van Hal, J.D.M.3
-
12
-
-
77749279701
-
Behavioral science and energy policy
-
[12] Allcott, H., Mullainathan, S., Behavioral science and energy policy. Science 327:5970 (2010), 1204–1205.
-
(2010)
Science
, vol.327
, Issue.5970
, pp. 1204-1205
-
-
Allcott, H.1
Mullainathan, S.2
-
13
-
-
79961027119
-
Social norms and energy conservation
-
[13] Allcott, H., Social norms and energy conservation. J. Public Econ. 95:9–10 (2011), 1082–1095.
-
(2011)
J. Public Econ.
, vol.95
, Issue.9-10
, pp. 1082-1095
-
-
Allcott, H.1
-
14
-
-
67650761091
-
Modeling of end-use energy consumption in the residential sector: a review of modeling techniques
-
[14] Swan, L.G., Ugursal, V.I., Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew. Sustainable Energy Rev. 13:8 (2009), 1819–1835.
-
(2009)
Renew. Sustainable Energy Rev.
, vol.13
, Issue.8
, pp. 1819-1835
-
-
Swan, L.G.1
Ugursal, V.I.2
-
15
-
-
58749106770
-
User behavior in whole building simulation
-
[15] Hoes, P., et al. User behavior in whole building simulation. Energy Build. 41:3 (2009), 295–302.
-
(2009)
Energy Build.
, vol.41
, Issue.3
, pp. 295-302
-
-
Hoes, P.1
-
16
-
-
84896085639
-
Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
-
[16] Jain, R.K., et al. Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl. Energy 123:0 (2014), 168–178.
-
(2014)
Appl. Energy
, vol.123
, pp. 168-178
-
-
Jain, R.K.1
-
17
-
-
84907503925
-
Short Term Electricity Load Forecasting on Varying Levels of Aggregation
-
arXiv preprint arXiv:1404.0058
-
[17] R. Sevlian, R. Rajagopal, Short Term Electricity Load Forecasting on Varying Levels of Aggregation. arXiv preprint arXiv:1404.0058, (2014).
-
(2014)
-
-
Sevlian, R.1
Rajagopal, R.2
-
19
-
-
84899701114
-
Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
-
[19] Fan, C., Xiao, F., Wang, S., Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 127 (2014), 1–10.
-
(2014)
Appl. Energy
, vol.127
, pp. 1-10
-
-
Fan, C.1
Xiao, F.2
Wang, S.3
-
20
-
-
84860223914
-
A review on the prediction of building energy consumption
-
[20] Zhao, H.-x., Magoulès, F., A review on the prediction of building energy consumption. Renew. Sustainable Energy Rev. 16:6 (2012), 3586–3592.
-
(2012)
Renew. Sustainable Energy Rev.
, vol.16
, Issue.6
, pp. 3586-3592
-
-
Zhao, H.-X.1
Magoulès, F.2
-
21
-
-
77957308800
-
Modeling and prediction of Turkey's electricity consumption using Support Vector Regression
-
[21] Kavaklioglu, K., Modeling and prediction of Turkey's electricity consumption using Support Vector Regression. Appl. Energy 88:1 (2011), 368–375.
-
(2011)
Appl. Energy
, vol.88
, Issue.1
, pp. 368-375
-
-
Kavaklioglu, K.1
-
22
-
-
0242317861
-
Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks
-
[22] Lee, W.-Y., House, J.M., Kyong, N.-H., Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks. Appl. Energy 77:2 (2004), 153–170.
-
(2004)
Appl. Energy
, vol.77
, Issue.2
, pp. 153-170
-
-
Lee, W.-Y.1
House, J.M.2
Kyong, N.-H.3
-
23
-
-
75449093272
-
Artificial neural networks for energy analysis of office buildings with daylighting
-
[23] Wong, S., Wan, K.K., Lam, T.N., Artificial neural networks for energy analysis of office buildings with daylighting. Appl. Energy 87:2 (2010), 551–557.
-
(2010)
Appl. Energy
, vol.87
, Issue.2
, pp. 551-557
-
-
Wong, S.1
Wan, K.K.2
Lam, T.N.3
-
24
-
-
64849083683
-
Applying support vector machine to predict hourly cooling load in the building
-
[24] Li, Q., et al. Applying support vector machine to predict hourly cooling load in the building. Appl. Energy 86:10 (2009), 2249–2256.
-
(2009)
Appl. Energy
, vol.86
, Issue.10
, pp. 2249-2256
-
-
Li, Q.1
-
25
-
-
1642323621
-
Cooling load prediction for buildings using general regression neural networks
-
[25] Ben-Nakhi, A.E., Mahmoud, M.A., Cooling load prediction for buildings using general regression neural networks. Energy Convers. Manage. 45:13 (2004), 2127–2141.
-
(2004)
Energy Convers. Manage.
, vol.45
, Issue.13
, pp. 2127-2141
-
-
Ben-Nakhi, A.E.1
Mahmoud, M.A.2
-
26
-
-
0036469966
-
Modeling of the appliance: lighting, and space-cooling energy consumptions in the residential sector using neural networks
-
[26] Aydinalp, M., Ismet Ugursal, V., Fung, A.S., Modeling of the appliance: lighting, and space-cooling energy consumptions in the residential sector using neural networks. Appl. Energy 71:2 (2002), 87–110.
-
(2002)
Appl. Energy
, vol.71
, Issue.2
, pp. 87-110
-
-
Aydinalp, M.1
Ismet Ugursal, V.2
Fung, A.S.3
-
28
-
-
0028698662
-
Bayesian nonlinear modeling for the prediction competition
-
[28] MacKay, D.J., Bayesian nonlinear modeling for the prediction competition. ASHRAE Trans. 100:2 (1994), 1053–1062.
-
(1994)
ASHRAE Trans.
, vol.100
, Issue.2
, pp. 1053-1062
-
-
MacKay, D.J.1
-
29
-
-
25844500264
-
On-line building energy prediction using adaptive artificial neural networks
-
[29] Yang, J., Rivard, H., Zmeureanu, R., On-line building energy prediction using adaptive artificial neural networks. Energy Build. 37:12 (2005), 1250–1259.
-
(2005)
Energy Build.
, vol.37
, Issue.12
, pp. 1250-1259
-
-
Yang, J.1
Rivard, H.2
Zmeureanu, R.3
-
30
-
-
33646870136
-
Modeling and predicting building's energy use with artificial neural networks: methods and results
-
[30] Karatasou, S., Santamouris, M., Geros, V., Modeling and predicting building's energy use with artificial neural networks: methods and results. Energy Build. 38:8 (2006), 949–958.
-
(2006)
Energy Build.
, vol.38
, Issue.8
, pp. 949-958
-
-
Karatasou, S.1
Santamouris, M.2
Geros, V.3
-
31
-
-
84861802647
-
Predicting future hourly residential electrical consumption: a machine learning case study
-
[31] Edwards, R.E., New, J., Parker, L.E., Predicting future hourly residential electrical consumption: a machine learning case study. Energy Build. 49 (2012), 591–603.
-
(2012)
Energy Build.
, vol.49
, pp. 591-603
-
-
Edwards, R.E.1
New, J.2
Parker, L.E.3
-
32
-
-
56049088473
-
Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks
-
[32] Li, Q., et al. Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks. Energy Convers. Manage. 50:1 (2009), 90–96.
-
(2009)
Energy Convers. Manage.
, vol.50
, Issue.1
, pp. 90-96
-
-
Li, Q.1
-
33
-
-
13244270060
-
Applying support vector machines to predict building energy consumption in tropical region
-
[33] Dong, B., Cao, C., Lee, S.E., Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 37:5 (2005), 545–553.
-
(2005)
Energy Build.
, vol.37
, Issue.5
, pp. 545-553
-
-
Dong, B.1
Cao, C.2
Lee, S.E.3
-
34
-
-
84885990028
-
Smart meter driven segmentation: what your consumption says about you
-
[34] Albert, A., Rajagopal, R., Smart meter driven segmentation: what your consumption says about you. IEEE Trans. Power Syst. 28:4 (2013), 4019–4030.
-
(2013)
IEEE Trans. Power Syst.
, vol.28
, Issue.4
, pp. 4019-4030
-
-
Albert, A.1
Rajagopal, R.2
-
35
-
-
36549023402
-
A methodology for peak energy requirement considering actual variation of occupants’ behavior schedules
-
[35] Tanimoto, J., Hagishima, A., Sagara, H., A methodology for peak energy requirement considering actual variation of occupants’ behavior schedules. Build. Environ. 43:4 (2008), 610–619.
-
(2008)
Build. Environ.
, vol.43
, Issue.4
, pp. 610-619
-
-
Tanimoto, J.1
Hagishima, A.2
Sagara, H.3
-
36
-
-
84891518626
-
Real-time, appliance-level electricity use feedback system: how to engage users?
-
[36] Chen, V.L., Delmas, M.A., Kaiser, W.J., Real-time, appliance-level electricity use feedback system: how to engage users?. Energy Build. 70 (2014), 455–462.
-
(2014)
Energy Build.
, vol.70
, pp. 455-462
-
-
Chen, V.L.1
Delmas, M.A.2
Kaiser, W.J.3
-
37
-
-
84884985516
-
Individual energy use and feedback in an office setting: a field trial
-
[37] Murtagh, N., et al. Individual energy use and feedback in an office setting: a field trial. Energy Policy 62 (2013), 717–728.
-
(2013)
Energy Policy
, vol.62
, pp. 717-728
-
-
Murtagh, N.1
-
38
-
-
84909585406
-
BizWatts: a modular socio-technical energy management system for empowering commercial building occupants to conserve energy
-
[38] Gulbinas, R., Jain, R.K., Taylor, J.E., BizWatts: a modular socio-technical energy management system for empowering commercial building occupants to conserve energy. Appl. Energy, 2014.
-
(2014)
Appl. Energy
-
-
Gulbinas, R.1
Jain, R.K.2
Taylor, J.E.3
-
39
-
-
84946071470
-
The Role of Social Norms in Incentivising Energy Reduction in Organizations
-
[39] P. Bradley, M. Leach, S. Fudge, The Role of Social Norms in Incentivising Energy Reduction in Organizations. (2014).
-
(2014)
-
-
Bradley, P.1
Leach, M.2
Fudge, S.3
-
40
-
-
84875674636
-
Toward the design of a dashboard to promote environmentally sustainable behavior among office workers
-
Springer
-
[40] Yun, R., et al. Toward the design of a dashboard to promote environmentally sustainable behavior among office workers. Persuasive Technology, 2013, Springer, 246–252.
-
(2013)
Persuasive Technology
, pp. 246-252
-
-
Yun, R.1
-
41
-
-
84880736367
-
Promoting behaviour change through personalized energy feedback in offices
-
[41] Coleman, M.J., et al. Promoting behaviour change through personalized energy feedback in offices. Build. Res. Inf. 41:6 (2013), 637–651.
-
(2013)
Build. Res. Inf.
, vol.41
, Issue.6
, pp. 637-651
-
-
Coleman, M.J.1
-
42
-
-
84909585406
-
BizWatts: a modular socio-technical energy management system for empowering commercial building occupants to conserve energy
-
[42] Gulbinas, R., Jain, R., Taylor, J., BizWatts: a modular socio-technical energy management system for empowering commercial building occupants to conserve energy. Appl. Energy 136 (2014), 1076–1084.
-
(2014)
Appl. Energy
, vol.136
, pp. 1076-1084
-
-
Gulbinas, R.1
Jain, R.2
Taylor, J.3
-
43
-
-
84864521328
-
Stochastic models for building energy prediction based on occupant behavior assessment
-
[43] Virote, J., Neves-Silva, R., Stochastic models for building energy prediction based on occupant behavior assessment. Energy Build. 53 (2012), 183–193.
-
(2012)
Energy Build.
, vol.53
, pp. 183-193
-
-
Virote, J.1
Neves-Silva, R.2
-
44
-
-
79953762400
-
User Behaviour and Energy Performance in Buildings
-
Internationalen Energiewirtschaftstagung an der TU Wien (IEWT) Wien, Austria
-
[44] Mahdavi, A., Pröglhöf, C., User Behaviour and Energy Performance in Buildings. 2009, Internationalen Energiewirtschaftstagung an der TU Wien (IEWT), Wien, Austria.
-
(2009)
-
-
Mahdavi, A.1
Pröglhöf, C.2
-
45
-
-
84966600544
-
Algorithm AS 136: a k-means clustering algorithm
-
[45] Hartigan, J.A., Wong, M.A., Algorithm AS 136: a k-means clustering algorithm. Appl. Stat., 1979, 100–108.
-
(1979)
Appl. Stat.
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
46
-
-
79955702502
-
LIBSVM: a library for support vector machines
-
[46] Chang, C.-C., Lin, C.-J., LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3), 2011, 27.
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, Issue.3
, pp. 27
-
-
Chang, C.-C.1
Lin, C.-J.2
-
47
-
-
84857466151
-
Machine Learning: a Probabilistic Perspective
-
MIT press
-
[47] Murphy, K.P., Machine Learning: a Probabilistic Perspective. 2012, MIT press.
-
(2012)
-
-
Murphy, K.P.1
-
48
-
-
34548080780
-
-
Cambridge University Press Cambridge
-
[48] Manning, C.D., Raghavan, P., Schütze, H., Introduction to Information Retrieval, vol. 1, 2008, Cambridge University Press, Cambridge.
-
(2008)
Introduction to Information Retrieval
, vol.vol. 1
-
-
Manning, C.D.1
Raghavan, P.2
Schütze, H.3
-
49
-
-
84936887153
-
An empirical comparison of internal and external load profile codebook coverage of building occupant energy-use behavior
-
ASCE
-
[49] Khosrowpour, A., Gulbinas, R., Taylor, J.E., An empirical comparison of internal and external load profile codebook coverage of building occupant energy-use behavior. Computing in Civil Engineering, 2015, ASCE.
-
(2015)
Computing in Civil Engineering
-
-
Khosrowpour, A.1
Gulbinas, R.2
Taylor, J.E.3
-
52
-
-
84875135154
-
Segmenting consumers using smart meter data
-
[52] Albert, A., Rajagopal, R., Sevlian, R., Segmenting consumers using smart meter data. Proceedings of the Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, ACM, 2011.
-
(2011)
Proceedings of the Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, ACM
-
-
Albert, A.1
Rajagopal, R.2
Sevlian, R.3
-
53
-
-
79959702672
-
Customer classification and load profiling method for distribution systems
-
[53] Mutanen, A., et al. Customer classification and load profiling method for distribution systems. IEEE Trans. Power Deliv. 26:3 (2011), 1755–1763.
-
(2011)
IEEE Trans. Power Deliv.
, vol.26
, Issue.3
, pp. 1755-1763
-
-
Mutanen, A.1
-
54
-
-
85027927176
-
Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities
-
[54] Quilumba, F.L., et al. Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities. IEEE Trans. Smart Grids 6:2 (2015), 911–918.
-
(2015)
IEEE Trans. Smart Grids
, vol.6
, Issue.2
, pp. 911-918
-
-
Quilumba, F.L.1
-
55
-
-
84907504512
-
Effects of real-time eco-feedback and organizational network dynamics on energy efficient behavior in commercial buildings
-
[55] Gulbinas, R., Taylor, J.E., Effects of real-time eco-feedback and organizational network dynamics on energy efficient behavior in commercial buildings. Energy Build. 84:0 (2014), 493–500.
-
(2014)
Energy Build.
, vol.84
, pp. 493-500
-
-
Gulbinas, R.1
Taylor, J.E.2
-
56
-
-
84904877129
-
How Long Do Treatment Effects Last? Persistence and Durability of a Descriptive Norms Intervention's Effect on Energy Conservation
-
[56] H. Allcott, T.T. Rogers, How Long Do Treatment Effects Last? Persistence and Durability of a Descriptive Norms Intervention's Effect on Energy Conservation. (2012).
-
(2012)
-
-
Allcott, H.1
Rogers, T.T.2
-
58
-
-
84916608385
-
An energy estimation framework for event-based methods in Non-Intrusive Load Monitoring
-
[58] Giri, S., Bergés, M., An energy estimation framework for event-based methods in Non-Intrusive Load Monitoring. Energy Convers. Manage. 90 (2015), 488–498.
-
(2015)
Energy Convers. Manage.
, vol.90
, pp. 488-498
-
-
Giri, S.1
Bergés, M.2
-
59
-
-
84912564671
-
A framework for enabling energy-aware facilities through minimally-intrusive approaches
-
[59] M.E. Berges Gonzalez, A framework for enabling energy-aware facilities through minimally-intrusive approaches. (2010).
-
(2010)
-
-
Berges Gonzalez, M.E.1
|