메뉴 건너뛰기




Volumn 127, Issue , 2016, Pages 1133-1145

Occupant workstation level energy-use prediction in commercial buildings: Developing and assessing a new method to enable targeted energy efficiency programs

Author keywords

Commercial buildings; Energy efficiency; Machine learning; Occupant behavior; Support vector machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUILDINGS; ENERGY UTILIZATION; FORECASTING; INTELLIGENT BUILDINGS; LEARNING ALGORITHMS; LEARNING SYSTEMS; OFFICE BUILDINGS; SUPPORT VECTOR MACHINES;

EID: 84977143048     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2016.05.071     Document Type: Article
Times cited : (24)

References (60)
  • 1
    • 84977182992 scopus 로고    scopus 로고
    • Annual Energy Outlook 2014 Early Release Overview.
    • [1] U.S. EIA, Annual Energy Outlook 2014 Early Release Overview. (2014).
    • (2014)
    • EIA, U.S.1
  • 2
    • 85027951993 scopus 로고    scopus 로고
    • Segmentation and classification of commercial building occupants by energy-use efficiency and predictability
    • [2] Gulbinas, R., Khosrowpour, A., Taylor, J.E., Segmentation and classification of commercial building occupants by energy-use efficiency and predictability. IEEE Trans. Smart Grid, 6(3), 2014.
    • (2014) IEEE Trans. Smart Grid , vol.6 , Issue.3
    • Gulbinas, R.1    Khosrowpour, A.2    Taylor, J.E.3
  • 3
    • 84892577847 scopus 로고    scopus 로고
    • Household energy consumption segmentation using hourly data
    • [3] Kwac, J., Flora, J., Rajagopal, R., Household energy consumption segmentation using hourly data. IEEE Trans. Smart Grids 5:1 (2014), 420–430.
    • (2014) IEEE Trans. Smart Grids , vol.5 , Issue.1 , pp. 420-430
    • Kwac, J.1    Flora, J.2    Rajagopal, R.3
  • 4
    • 84906487523 scopus 로고    scopus 로고
    • Assessing occupants’ energy load variation through existing wireless network infrastructure in commercial and educational buildings
    • [4] Chen, J., Ahn, C., Assessing occupants’ energy load variation through existing wireless network infrastructure in commercial and educational buildings. Energy Build., 2014.
    • (2014) Energy Build.
    • Chen, J.1    Ahn, C.2
  • 5
    • 84894129540 scopus 로고    scopus 로고
    • Recognizing energy-related activities using sensors commonly installed in office buildings
    • [5] Milenkovic, M., Amft, O., Recognizing energy-related activities using sensors commonly installed in office buildings. Procedia Comput. Sci. 19 (2013), 669–677.
    • (2013) Procedia Comput. Sci. , vol.19 , pp. 669-677
    • Milenkovic, M.1    Amft, O.2
  • 7
    • 84857995866 scopus 로고    scopus 로고
    • The impact of consumers’ feedback preferences on domestic electricity consumption
    • [7] Vassileva, I., et al. The impact of consumers’ feedback preferences on domestic electricity consumption. Appl. Energy 93 (2012), 575–582.
    • (2012) Appl. Energy , vol.93 , pp. 575-582
    • Vassileva, I.1
  • 8
    • 84870679467 scopus 로고    scopus 로고
    • Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term
    • [8] Hargreaves, T., Nye, M., Burgess, J., Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy 52:0 (2013), 126–134.
    • (2013) Energy Policy , vol.52 , pp. 126-134
    • Hargreaves, T.1    Nye, M.2    Burgess, J.3
  • 9
    • 84883272483 scopus 로고    scopus 로고
    • WATTSBurning: design and evaluation of an innovative eco-feedback system
    • Springer
    • [9] Quintal, F., et al. WATTSBurning: design and evaluation of an innovative eco-feedback system. Human-Computer Interaction–INTERACT, 2013, 2013, Springer, 453–470.
    • (2013) Human-Computer Interaction–INTERACT, 2013 , pp. 453-470
    • Quintal, F.1
  • 11
    • 77956200080 scopus 로고    scopus 로고
    • Home energy monitors: impact over the medium-term
    • [11] van Dam, S.S., Bakker, C.A., van Hal, J.D.M., Home energy monitors: impact over the medium-term. Build. Res. Inf. 38:5 (2010), 458–469.
    • (2010) Build. Res. Inf. , vol.38 , Issue.5 , pp. 458-469
    • van Dam, S.S.1    Bakker, C.A.2    van Hal, J.D.M.3
  • 12
    • 77749279701 scopus 로고    scopus 로고
    • Behavioral science and energy policy
    • [12] Allcott, H., Mullainathan, S., Behavioral science and energy policy. Science 327:5970 (2010), 1204–1205.
    • (2010) Science , vol.327 , Issue.5970 , pp. 1204-1205
    • Allcott, H.1    Mullainathan, S.2
  • 13
    • 79961027119 scopus 로고    scopus 로고
    • Social norms and energy conservation
    • [13] Allcott, H., Social norms and energy conservation. J. Public Econ. 95:9–10 (2011), 1082–1095.
    • (2011) J. Public Econ. , vol.95 , Issue.9-10 , pp. 1082-1095
    • Allcott, H.1
  • 14
    • 67650761091 scopus 로고    scopus 로고
    • Modeling of end-use energy consumption in the residential sector: a review of modeling techniques
    • [14] Swan, L.G., Ugursal, V.I., Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew. Sustainable Energy Rev. 13:8 (2009), 1819–1835.
    • (2009) Renew. Sustainable Energy Rev. , vol.13 , Issue.8 , pp. 1819-1835
    • Swan, L.G.1    Ugursal, V.I.2
  • 15
    • 58749106770 scopus 로고    scopus 로고
    • User behavior in whole building simulation
    • [15] Hoes, P., et al. User behavior in whole building simulation. Energy Build. 41:3 (2009), 295–302.
    • (2009) Energy Build. , vol.41 , Issue.3 , pp. 295-302
    • Hoes, P.1
  • 16
    • 84896085639 scopus 로고    scopus 로고
    • Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
    • [16] Jain, R.K., et al. Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl. Energy 123:0 (2014), 168–178.
    • (2014) Appl. Energy , vol.123 , pp. 168-178
    • Jain, R.K.1
  • 17
    • 84907503925 scopus 로고    scopus 로고
    • Short Term Electricity Load Forecasting on Varying Levels of Aggregation
    • arXiv preprint arXiv:1404.0058
    • [17] R. Sevlian, R. Rajagopal, Short Term Electricity Load Forecasting on Varying Levels of Aggregation. arXiv preprint arXiv:1404.0058, (2014).
    • (2014)
    • Sevlian, R.1    Rajagopal, R.2
  • 19
    • 84899701114 scopus 로고    scopus 로고
    • Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
    • [19] Fan, C., Xiao, F., Wang, S., Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 127 (2014), 1–10.
    • (2014) Appl. Energy , vol.127 , pp. 1-10
    • Fan, C.1    Xiao, F.2    Wang, S.3
  • 20
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • [20] Zhao, H.-x., Magoulès, F., A review on the prediction of building energy consumption. Renew. Sustainable Energy Rev. 16:6 (2012), 3586–3592.
    • (2012) Renew. Sustainable Energy Rev. , vol.16 , Issue.6 , pp. 3586-3592
    • Zhao, H.-X.1    Magoulès, F.2
  • 21
    • 77957308800 scopus 로고    scopus 로고
    • Modeling and prediction of Turkey's electricity consumption using Support Vector Regression
    • [21] Kavaklioglu, K., Modeling and prediction of Turkey's electricity consumption using Support Vector Regression. Appl. Energy 88:1 (2011), 368–375.
    • (2011) Appl. Energy , vol.88 , Issue.1 , pp. 368-375
    • Kavaklioglu, K.1
  • 22
    • 0242317861 scopus 로고    scopus 로고
    • Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks
    • [22] Lee, W.-Y., House, J.M., Kyong, N.-H., Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks. Appl. Energy 77:2 (2004), 153–170.
    • (2004) Appl. Energy , vol.77 , Issue.2 , pp. 153-170
    • Lee, W.-Y.1    House, J.M.2    Kyong, N.-H.3
  • 23
    • 75449093272 scopus 로고    scopus 로고
    • Artificial neural networks for energy analysis of office buildings with daylighting
    • [23] Wong, S., Wan, K.K., Lam, T.N., Artificial neural networks for energy analysis of office buildings with daylighting. Appl. Energy 87:2 (2010), 551–557.
    • (2010) Appl. Energy , vol.87 , Issue.2 , pp. 551-557
    • Wong, S.1    Wan, K.K.2    Lam, T.N.3
  • 24
    • 64849083683 scopus 로고    scopus 로고
    • Applying support vector machine to predict hourly cooling load in the building
    • [24] Li, Q., et al. Applying support vector machine to predict hourly cooling load in the building. Appl. Energy 86:10 (2009), 2249–2256.
    • (2009) Appl. Energy , vol.86 , Issue.10 , pp. 2249-2256
    • Li, Q.1
  • 25
    • 1642323621 scopus 로고    scopus 로고
    • Cooling load prediction for buildings using general regression neural networks
    • [25] Ben-Nakhi, A.E., Mahmoud, M.A., Cooling load prediction for buildings using general regression neural networks. Energy Convers. Manage. 45:13 (2004), 2127–2141.
    • (2004) Energy Convers. Manage. , vol.45 , Issue.13 , pp. 2127-2141
    • Ben-Nakhi, A.E.1    Mahmoud, M.A.2
  • 26
    • 0036469966 scopus 로고    scopus 로고
    • Modeling of the appliance: lighting, and space-cooling energy consumptions in the residential sector using neural networks
    • [26] Aydinalp, M., Ismet Ugursal, V., Fung, A.S., Modeling of the appliance: lighting, and space-cooling energy consumptions in the residential sector using neural networks. Appl. Energy 71:2 (2002), 87–110.
    • (2002) Appl. Energy , vol.71 , Issue.2 , pp. 87-110
    • Aydinalp, M.1    Ismet Ugursal, V.2    Fung, A.S.3
  • 28
    • 0028698662 scopus 로고
    • Bayesian nonlinear modeling for the prediction competition
    • [28] MacKay, D.J., Bayesian nonlinear modeling for the prediction competition. ASHRAE Trans. 100:2 (1994), 1053–1062.
    • (1994) ASHRAE Trans. , vol.100 , Issue.2 , pp. 1053-1062
    • MacKay, D.J.1
  • 29
    • 25844500264 scopus 로고    scopus 로고
    • On-line building energy prediction using adaptive artificial neural networks
    • [29] Yang, J., Rivard, H., Zmeureanu, R., On-line building energy prediction using adaptive artificial neural networks. Energy Build. 37:12 (2005), 1250–1259.
    • (2005) Energy Build. , vol.37 , Issue.12 , pp. 1250-1259
    • Yang, J.1    Rivard, H.2    Zmeureanu, R.3
  • 30
    • 33646870136 scopus 로고    scopus 로고
    • Modeling and predicting building's energy use with artificial neural networks: methods and results
    • [30] Karatasou, S., Santamouris, M., Geros, V., Modeling and predicting building's energy use with artificial neural networks: methods and results. Energy Build. 38:8 (2006), 949–958.
    • (2006) Energy Build. , vol.38 , Issue.8 , pp. 949-958
    • Karatasou, S.1    Santamouris, M.2    Geros, V.3
  • 31
    • 84861802647 scopus 로고    scopus 로고
    • Predicting future hourly residential electrical consumption: a machine learning case study
    • [31] Edwards, R.E., New, J., Parker, L.E., Predicting future hourly residential electrical consumption: a machine learning case study. Energy Build. 49 (2012), 591–603.
    • (2012) Energy Build. , vol.49 , pp. 591-603
    • Edwards, R.E.1    New, J.2    Parker, L.E.3
  • 32
    • 56049088473 scopus 로고    scopus 로고
    • Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks
    • [32] Li, Q., et al. Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks. Energy Convers. Manage. 50:1 (2009), 90–96.
    • (2009) Energy Convers. Manage. , vol.50 , Issue.1 , pp. 90-96
    • Li, Q.1
  • 33
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • [33] Dong, B., Cao, C., Lee, S.E., Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 37:5 (2005), 545–553.
    • (2005) Energy Build. , vol.37 , Issue.5 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 34
    • 84885990028 scopus 로고    scopus 로고
    • Smart meter driven segmentation: what your consumption says about you
    • [34] Albert, A., Rajagopal, R., Smart meter driven segmentation: what your consumption says about you. IEEE Trans. Power Syst. 28:4 (2013), 4019–4030.
    • (2013) IEEE Trans. Power Syst. , vol.28 , Issue.4 , pp. 4019-4030
    • Albert, A.1    Rajagopal, R.2
  • 35
    • 36549023402 scopus 로고    scopus 로고
    • A methodology for peak energy requirement considering actual variation of occupants’ behavior schedules
    • [35] Tanimoto, J., Hagishima, A., Sagara, H., A methodology for peak energy requirement considering actual variation of occupants’ behavior schedules. Build. Environ. 43:4 (2008), 610–619.
    • (2008) Build. Environ. , vol.43 , Issue.4 , pp. 610-619
    • Tanimoto, J.1    Hagishima, A.2    Sagara, H.3
  • 36
    • 84891518626 scopus 로고    scopus 로고
    • Real-time, appliance-level electricity use feedback system: how to engage users?
    • [36] Chen, V.L., Delmas, M.A., Kaiser, W.J., Real-time, appliance-level electricity use feedback system: how to engage users?. Energy Build. 70 (2014), 455–462.
    • (2014) Energy Build. , vol.70 , pp. 455-462
    • Chen, V.L.1    Delmas, M.A.2    Kaiser, W.J.3
  • 37
    • 84884985516 scopus 로고    scopus 로고
    • Individual energy use and feedback in an office setting: a field trial
    • [37] Murtagh, N., et al. Individual energy use and feedback in an office setting: a field trial. Energy Policy 62 (2013), 717–728.
    • (2013) Energy Policy , vol.62 , pp. 717-728
    • Murtagh, N.1
  • 38
    • 84909585406 scopus 로고    scopus 로고
    • BizWatts: a modular socio-technical energy management system for empowering commercial building occupants to conserve energy
    • [38] Gulbinas, R., Jain, R.K., Taylor, J.E., BizWatts: a modular socio-technical energy management system for empowering commercial building occupants to conserve energy. Appl. Energy, 2014.
    • (2014) Appl. Energy
    • Gulbinas, R.1    Jain, R.K.2    Taylor, J.E.3
  • 39
    • 84946071470 scopus 로고    scopus 로고
    • The Role of Social Norms in Incentivising Energy Reduction in Organizations
    • [39] P. Bradley, M. Leach, S. Fudge, The Role of Social Norms in Incentivising Energy Reduction in Organizations. (2014).
    • (2014)
    • Bradley, P.1    Leach, M.2    Fudge, S.3
  • 40
    • 84875674636 scopus 로고    scopus 로고
    • Toward the design of a dashboard to promote environmentally sustainable behavior among office workers
    • Springer
    • [40] Yun, R., et al. Toward the design of a dashboard to promote environmentally sustainable behavior among office workers. Persuasive Technology, 2013, Springer, 246–252.
    • (2013) Persuasive Technology , pp. 246-252
    • Yun, R.1
  • 41
    • 84880736367 scopus 로고    scopus 로고
    • Promoting behaviour change through personalized energy feedback in offices
    • [41] Coleman, M.J., et al. Promoting behaviour change through personalized energy feedback in offices. Build. Res. Inf. 41:6 (2013), 637–651.
    • (2013) Build. Res. Inf. , vol.41 , Issue.6 , pp. 637-651
    • Coleman, M.J.1
  • 42
    • 84909585406 scopus 로고    scopus 로고
    • BizWatts: a modular socio-technical energy management system for empowering commercial building occupants to conserve energy
    • [42] Gulbinas, R., Jain, R., Taylor, J., BizWatts: a modular socio-technical energy management system for empowering commercial building occupants to conserve energy. Appl. Energy 136 (2014), 1076–1084.
    • (2014) Appl. Energy , vol.136 , pp. 1076-1084
    • Gulbinas, R.1    Jain, R.2    Taylor, J.3
  • 43
    • 84864521328 scopus 로고    scopus 로고
    • Stochastic models for building energy prediction based on occupant behavior assessment
    • [43] Virote, J., Neves-Silva, R., Stochastic models for building energy prediction based on occupant behavior assessment. Energy Build. 53 (2012), 183–193.
    • (2012) Energy Build. , vol.53 , pp. 183-193
    • Virote, J.1    Neves-Silva, R.2
  • 44
    • 79953762400 scopus 로고    scopus 로고
    • User Behaviour and Energy Performance in Buildings
    • Internationalen Energiewirtschaftstagung an der TU Wien (IEWT) Wien, Austria
    • [44] Mahdavi, A., Pröglhöf, C., User Behaviour and Energy Performance in Buildings. 2009, Internationalen Energiewirtschaftstagung an der TU Wien (IEWT), Wien, Austria.
    • (2009)
    • Mahdavi, A.1    Pröglhöf, C.2
  • 45
    • 84966600544 scopus 로고
    • Algorithm AS 136: a k-means clustering algorithm
    • [45] Hartigan, J.A., Wong, M.A., Algorithm AS 136: a k-means clustering algorithm. Appl. Stat., 1979, 100–108.
    • (1979) Appl. Stat. , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 46
  • 47
    • 84857466151 scopus 로고    scopus 로고
    • Machine Learning: a Probabilistic Perspective
    • MIT press
    • [47] Murphy, K.P., Machine Learning: a Probabilistic Perspective. 2012, MIT press.
    • (2012)
    • Murphy, K.P.1
  • 49
    • 84936887153 scopus 로고    scopus 로고
    • An empirical comparison of internal and external load profile codebook coverage of building occupant energy-use behavior
    • ASCE
    • [49] Khosrowpour, A., Gulbinas, R., Taylor, J.E., An empirical comparison of internal and external load profile codebook coverage of building occupant energy-use behavior. Computing in Civil Engineering, 2015, ASCE.
    • (2015) Computing in Civil Engineering
    • Khosrowpour, A.1    Gulbinas, R.2    Taylor, J.E.3
  • 53
    • 79959702672 scopus 로고    scopus 로고
    • Customer classification and load profiling method for distribution systems
    • [53] Mutanen, A., et al. Customer classification and load profiling method for distribution systems. IEEE Trans. Power Deliv. 26:3 (2011), 1755–1763.
    • (2011) IEEE Trans. Power Deliv. , vol.26 , Issue.3 , pp. 1755-1763
    • Mutanen, A.1
  • 54
    • 85027927176 scopus 로고    scopus 로고
    • Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities
    • [54] Quilumba, F.L., et al. Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities. IEEE Trans. Smart Grids 6:2 (2015), 911–918.
    • (2015) IEEE Trans. Smart Grids , vol.6 , Issue.2 , pp. 911-918
    • Quilumba, F.L.1
  • 55
    • 84907504512 scopus 로고    scopus 로고
    • Effects of real-time eco-feedback and organizational network dynamics on energy efficient behavior in commercial buildings
    • [55] Gulbinas, R., Taylor, J.E., Effects of real-time eco-feedback and organizational network dynamics on energy efficient behavior in commercial buildings. Energy Build. 84:0 (2014), 493–500.
    • (2014) Energy Build. , vol.84 , pp. 493-500
    • Gulbinas, R.1    Taylor, J.E.2
  • 56
    • 84904877129 scopus 로고    scopus 로고
    • How Long Do Treatment Effects Last? Persistence and Durability of a Descriptive Norms Intervention's Effect on Energy Conservation
    • [56] H. Allcott, T.T. Rogers, How Long Do Treatment Effects Last? Persistence and Durability of a Descriptive Norms Intervention's Effect on Energy Conservation. (2012).
    • (2012)
    • Allcott, H.1    Rogers, T.T.2
  • 58
    • 84916608385 scopus 로고    scopus 로고
    • An energy estimation framework for event-based methods in Non-Intrusive Load Monitoring
    • [58] Giri, S., Bergés, M., An energy estimation framework for event-based methods in Non-Intrusive Load Monitoring. Energy Convers. Manage. 90 (2015), 488–498.
    • (2015) Energy Convers. Manage. , vol.90 , pp. 488-498
    • Giri, S.1    Bergés, M.2
  • 59
    • 84912564671 scopus 로고    scopus 로고
    • A framework for enabling energy-aware facilities through minimally-intrusive approaches
    • [59] M.E. Berges Gonzalez, A framework for enabling energy-aware facilities through minimally-intrusive approaches. (2010).
    • (2010)
    • Berges Gonzalez, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.