메뉴 건너뛰기




Volumn , Issue , 2011, Pages 14-21

New parallel support vector regression for predicting building energy consumption

Author keywords

Building energy consumption; Map Reduce; Multi core; Parallel computing; Support Vector Regression (SVR)

Indexed keywords

BUILDING ENERGY CONSUMPTION; DATA SETS; DECOMPOSITION METHODS; GRADIENT VECTORS; MAP-REDUCE; MODEL TRAINING; MULTI CORE; MULTI PROCESSOR SYSTEMS; PARALLEL IMPLEMENTATIONS; PARALLELIZATIONS; SEQUENTIAL MINIMAL OPTIMIZATION; SHARED MEMORIES; SPEED INCREASE; STORAGE REQUIREMENTS; SUPPORT VECTOR REGRESSION (SVR); SUPPORT VECTOR REGRESSIONS;

EID: 79961153435     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SMDCM.2011.5949289     Document Type: Conference Paper
Times cited : (16)

References (27)
  • 2
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • DOI 10.1016/j.enbuild.2004.09.009, PII S0378778804002981
    • B. Dong, C. Cao, and S. E. Lee, "Applying support vector machines to predict building energy consumption in tropical region," Energy and Buildings, vol. 37, no. 5, pp. 545-553, 2005. (Pubitemid 40183476)
    • (2005) Energy and Buildings , vol.37 , Issue.5 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 3
    • 64849083683 scopus 로고    scopus 로고
    • Applying support vector machine to predict hourly cooling load in the building
    • Q. Li, Q. Meng, J. Cai, Y. Hiroshi, and M. Akashi, "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, vol. 86, no. 10, pp. 2249-2256, 2009.
    • (2009) Applied Energy , vol.86 , Issue.10 , pp. 2249-2256
    • Li, Q.1    Meng, Q.2    Cai, J.3    Hiroshi, Y.4    Akashi, M.5
  • 4
    • 49549124988 scopus 로고    scopus 로고
    • Vapnik's learning theory applied to energy consumption forecasts in residential buildings
    • F. Lai, F. Magoulès, and F. Lherminier, "Vapnik's learning theory applied to energy consumption forecasts in residential buildings," International Journal of Computer Mathematics, vol. 85, no. 10, pp. 1563-1588, 2008.
    • (2008) International Journal of Computer Mathematics , vol.85 , Issue.10 , pp. 1563-1588
    • Lai, F.1    Magoulès, F.2    Lherminier, F.3
  • 5
    • 79954458956 scopus 로고    scopus 로고
    • Parallel support vector machines applied to the prediction of multiple buildings energy consumption
    • H. X. Zhao and F. Magoulès, "Parallel support vector machines applied to the prediction of multiple buildings energy consumption," Journal of Algorithms & Computational Technology, vol. 4, no. 2, pp. 231-249, 2010.
    • (2010) Journal of Algorithms & Computational Technology , vol.4 , Issue.2 , pp. 231-249
    • Zhao, H.X.1    Magoulès, F.2
  • 8
    • 65449167843 scopus 로고    scopus 로고
    • Psvm: Parallelizing support vector machines on distributed computers
    • E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui, "Psvm: Parallelizing support vector machines on distributed computers," in NIPS, vol. 20, 2007.
    • (2007) NIPS , vol.20
    • Chang, E.Y.1    Zhu, K.2    Wang, H.3    Bai, H.4    Li, J.5    Qiu, Z.6    Cui, H.7
  • 9
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," Advances in kernel methods: support vector learning, pp. 185-208, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 13
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R. E. Fan, P. H. Chen, and C. J. Lin, "Working set selection using second order information for training support vector machines," Journal of Machine Learning Research, vol. 6, pp. 1889-1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 14
    • 33745784205 scopus 로고    scopus 로고
    • Parallel software for training large scale support vector machines on multiprocessor systems
    • L. Zanni, T. Serafini, and G. Zanghirati, "Parallel software for training large scale support vector machines on multiprocessor systems," Journal of Machine Learning Research, vol. 7, pp. 1467-1492, 2006. (Pubitemid 44024592)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1467-1492
    • Zanni, L.1    Serafini, T.2    Zanghirati, G.3
  • 15
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat, "Mapreduce: simplified data processing on large clusters," Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 21
    • 17144374074 scopus 로고    scopus 로고
    • Fast SVM training algorithm with decomposition on very large data sets
    • DOI 10.1109/TPAMI.2005.77
    • J. X. Dong, A. Krzyzak, and C. Y. Suen, "Fast svm training algorithm with decomposition on very large data sets," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 603-618, 2005. (Pubitemid 40556114)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.4 , pp. 603-618
    • Dong, J.-X.1    Krzyzak, A.2    Suen, C.Y.3
  • 23
    • 38849132106 scopus 로고    scopus 로고
    • Parallel randomized sampling for support vector machine (svm) and support vector regression (svr)
    • Y. Lu and V. Roychowdhury, "Parallel randomized sampling for support vector machine (svm) and support vector regression (svr)," Knowledge and Information Systems, vol. 14, pp. 233-247, 2008.
    • (2008) Knowledge and Information Systems , vol.14 , pp. 233-247
    • Lu, Y.1    Roychowdhury, V.2
  • 24
    • 33746869623 scopus 로고    scopus 로고
    • Parallel sequential minimal optimization for the training of support vector machines
    • DOI 10.1109/TNN.2006.875989
    • L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby, J. F. Xiu, and H. P. Lee, "Parallel sequential minimal optimization for the training of support vector machines," IEEE Transactions on Nueral Networks, vol. 17, no. 4, pp. 1039-1049, 2006. (Pubitemid 44194161)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 1039-1049
    • Cao, L.J.1    Keerthi, S.S.2    Ong, C.-J.3    Zhang, J.Q.4    Periyathamby, U.5    Fu, X.J.6    Lee, H.P.7
  • 26
    • 79961157573 scopus 로고    scopus 로고
    • EnergyPlus, 2010, available online at: http://www.EnergyPlus.gov.
    • (2010)
  • 27
    • 79961146519 scopus 로고    scopus 로고
    • Feature selection for predicting building energy consumption based on statistical learning method
    • in press
    • H. X. Zhao and F. Magoulès, "Feature selection for predicting building energy consumption based on statistical learning method," Journal of Algorithms & Computational Technology, 2011 (in press).
    • (2011) Journal of Algorithms & Computational Technology
    • Zhao, H.X.1    Magoulès, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.