-
1
-
-
0000516794
-
Atomistic locking and friction
-
10.1103/PhysRevB.41.11837
-
Hirano M, Shinjo K. Atomistic locking and friction. Phys Rev B 41(17):11837–11851 (1990)
-
(1990)
Phys Rev B
, vol.41
, Issue.17
, pp. 11837-11851
-
-
Hirano, M.1
Shinjo, K.2
-
2
-
-
12044256277
-
Anisotropy of frictional forces in muscovite
-
10.1103/PhysRevLett.67.2642
-
Hirano M, Shinjo K, Kaneko R, Murata Y. Anisotropy of frictional forces in muscovite. Mica Phys Rev Lett 67(19): 2642–2645(1991)
-
(1991)
Mica Phys Rev Lett
, vol.67
, Issue.19
, pp. 2642-2645
-
-
Hirano, M.1
Shinjo, K.2
Kaneko, R.3
Murata, Y.4
-
3
-
-
84870314136
-
Interlayer shear strength of single crystalline graphite
-
10.1007/s10409-012-0137-0
-
Liu Z, Zhang S M, Yang J R, Liu J Z, Yang Y L, Zheng Q S. Interlayer shear strength of single crystalline graphite. Acta Mech Sinica 28(4): 978–982 (2012)
-
(2012)
Acta Mech Sinica
, vol.28
, Issue.4
, pp. 978-982
-
-
Liu, Z.1
Zhang, S.M.2
Yang, J.R.3
Liu, J.Z.4
Yang, Y.L.5
Zheng, Q.S.6
-
4
-
-
0343291424
-
The frictional anisotropy of diamond
-
10.1038/283051a0
-
Enomoto Y, Tabor D. The frictional anisotropy of diamond. Nature 283(3):51–52 (1980)
-
(1980)
Nature
, vol.283
, Issue.3
, pp. 51-52
-
-
Enomoto, Y.1
Tabor, D.2
-
5
-
-
0001768061
-
The frictional anisotropy of diamond
-
10.1098/rspa.1981.0001
-
Enomoto Y, Tabor D. The frictional anisotropy of diamond. P Roy Soc Lond A Mat 373: 405–417 (1981)
-
(1981)
P Roy Soc Lond A Mat
, vol.373
, pp. 405-417
-
-
Enomoto, Y.1
Tabor, D.2
-
6
-
-
0031079324
-
Observation of superlubricity by scanning tunneling microscopy
-
10.1103/PhysRevLett.78.1448
-
Hirano M, Shinjo K, Kaneko R, Murata Y. Observation of superlubricity by scanning tunneling microscopy. Phys Rev Lett 78(8):1448–1451 (1997)
-
(1997)
Phys Rev Lett
, vol.78
, Issue.8
, pp. 1448-1451
-
-
Hirano, M.1
Shinjo, K.2
Kaneko, R.3
Murata, Y.4
-
7
-
-
33144460974
-
Superlubricity of molybdenum-disulfide
-
10.1103/PhysRevB.48.10583
-
Martin J M, Donnet C, Lemogne T, Epicier T. Superlubricity of molybdenum-disulfide. Phys Rev B 48(14): 10583–10586 (1993)
-
(1993)
Phys Rev B
, vol.48
, Issue.14
, pp. 10583-10586
-
-
Martin, J.M.1
Donnet, C.2
Lemogne, T.3
Epicier, T.4
-
8
-
-
0000218461
-
Superconductivity-dependent sliding friction
-
10.1103/PhysRevLett.80.1690
-
Dayo A, Alnasrallah W, Krim J. Superconductivity-dependent sliding friction. Phys Rev Lett 80(8): 1690–1693 (1998)
-
(1998)
Phys Rev Lett
, vol.80
, Issue.8
, pp. 1690-1693
-
-
Dayo, A.1
Alnasrallah, W.2
Krim, J.3
-
9
-
-
33746013198
-
Electronic control of friction in silicon pn junctions
-
10.1126/science.1125017
-
Park J Y, Ogletree D F, Thiel P A, Salmeron M. Electronic control of friction in silicon pn junctions. Science 313(5784): 186 (2006)
-
(2006)
Science
, vol.313
, Issue.5784
, pp. 186
-
-
Park, J.Y.1
Ogletree, D.F.2
Thiel, P.A.3
Salmeron, M.4
-
11
-
-
2342452518
-
Superlubricity of graphite
-
10.1103/PhysRevLett.92.126101
-
Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A, Zandbergen H W. Superlubricity of graphite. Phys Rev Lett 92(12): 126101 (2004)
-
(2004)
Phys Rev Lett
, vol.92
, Issue.12
, pp. 126101
-
-
Dienwiebel, M.1
Verhoeven, G.S.2
Pradeep, N.3
Frenken, J.W.M.4
Heimberg, J.A.5
Zandbergen, H.W.6
-
12
-
-
12444283759
-
Model experiments of superlubricity of graphite
-
10.1016/j.susc.2004.12.011
-
Dienwiebel M, Pradeep N, Verhoeven GS, Zandbergen H W, Frenken J W M. Model experiments of superlubricity of graphite. Surf Sci 576(1–3): 197–211 (2005)
-
(2005)
Surf Sci
, vol.576
, Issue.1-3
, pp. 197-211
-
-
Dienwiebel, M.1
Pradeep, N.2
Verhoeven, G.S.3
Zandbergen, H.W.4
Frenken, J.W.M.5
-
13
-
-
84874428649
-
Superlubric sliding of graphene nanoflakes on graphene
-
10.1021/nn305722d
-
Feng X F, Kwon S, Park J Y, Salmeron M. Superlubric sliding of graphene nanoflakes on graphene. Acs Nano 7(2): 1718–1724 (2013)
-
(2013)
Acs Nano
, vol.7
, Issue.2
, pp. 1718-1724
-
-
Feng, X.F.1
Kwon, S.2
Park, J.Y.3
Salmeron, M.4
-
14
-
-
84889637788
-
Scaling laws of structural lubricity
-
10.1103/PhysRevLett.111.235502
-
Dietzel D, Feldmann M, Schwarz U D, Fuchs H, Schirmeisen A. Scaling laws of structural lubricity. Phys Rev Lett 111(23): 235502 (2013)
-
(2013)
Phys Rev Lett
, vol.111
, Issue.23
, pp. 235502
-
-
Dietzel, D.1
Feldmann, M.2
Schwarz, U.D.3
Fuchs, H.4
Schirmeisen, A.5
-
15
-
-
84869990436
-
Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale
-
Deng Z, Smolyanitsky A, Li Q Y, Feng X Q, Cannara R J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat Mater 11(12): 1032–1037 (2012)
-
(2012)
Nat Mater
, vol.11
, Issue.12
, pp. 1032-1037
-
-
Deng, Z.1
Smolyanitsky, A.2
Li, Q.Y.3
Feng, X.Q.4
Cannara, R.J.5
-
16
-
-
84893128769
-
The diversity of friction behavior between bi-layer graphenes
-
10.1088/0957-4484/25/7/075703
-
Liu Z. The diversity of friction behavior between bi-layer graphenes. Nanotechnology 25(7): 075703 (2014)
-
(2014)
Nanotechnology
, vol.25
, Issue.7
, pp. 075703
-
-
Liu, Z.1
-
17
-
-
72449124636
-
Nanotribology: The renaissance of friction
-
10.1038/nmat2599
-
Urbakh M, Meyer E. Nanotribology: The renaissance of friction. Nat Mater 9(1): 8–10 (2010)
-
(2010)
Nat Mater
, vol.9
, Issue.1
, pp. 8-10
-
-
Urbakh, M.1
Meyer, E.2
-
18
-
-
84890560928
-
Friction: Towards macroscale superlubricity
-
10.1038/nnano.2013.244
-
Urbakh M. Friction: Towards macroscale superlubricity. Nat Nanotechnol 8(12): 893–894 (2013)
-
(2013)
Nat Nanotechnol
, vol.8
, Issue.12
, pp. 893-894
-
-
Urbakh, M.1
-
19
-
-
40849100737
-
Self-retracting motion of graphite microflakes
-
10.1103/PhysRevLett.100.067205
-
Zheng Q S, Jiang B, Liu S P, Weng Y X, Lu L, Xue Q K, Zhu J, Jiang Q, Wang S, Peng L M. Self-retracting motion of graphite microflakes. Phys Rev Lett 100(6): 067205 (2008)
-
(2008)
Phys Rev Lett
, vol.100
, Issue.6
, pp. 067205
-
-
Zheng, Q.S.1
Jiang, B.2
Liu, S.P.3
Weng, Y.X.4
Lu, L.5
Xue, Q.K.6
Zhu, J.7
Jiang, Q.8
Wang, S.9
Peng, L.M.10
-
20
-
-
79957874737
-
A graphite nanoeraser
-
10.1088/0957-4484/22/26/265706
-
Liu Z, Boggild P, Yang J R, Cheng Y, Grey F, Liu Y L, Wang L, Zheng Q S. A graphite nanoeraser. Nanotechnology 22(26): 265706 (2011)
-
(2011)
Nanotechnology
, vol.22
, Issue.26
, pp. 265706
-
-
Liu, Z.1
Boggild, P.2
Yang, J.R.3
Cheng, Y.4
Grey, F.5
Liu, Y.L.6
Wang, L.7
Zheng, Q.S.8
-
21
-
-
84861569767
-
Interlayer binding energy of graphite: A mesoscopic determination from deformation
-
10.1103/PhysRevB.85.205418
-
Liu Z, Liu J Z, Cheng Y, Li Z H, Wang L, Zheng Q S. Interlayer binding energy of graphite: A mesoscopic determination from deformation. Phys Rev B 85(20): 205418 (2012)
-
(2012)
Phys Rev B
, vol.85
, Issue.20
, pp. 205418
-
-
Liu, Z.1
Liu, J.Z.2
Cheng, Y.3
Li, Z.H.4
Wang, L.5
Zheng, Q.S.6
-
22
-
-
84861629760
-
Observation of microscale superlubricity in graphite
-
10.1103/PhysRevLett.108.205503
-
Liu Z, Yang J R, Grey F, Liu J Z, Liu Y L, Wang Y B, Yang Y L, Cheng Y, Zheng Q S. Observation of microscale superlubricity in graphite. Phys Rev Lett 108(20): 205503 (2012)
-
(2012)
Phys Rev Lett
, vol.108
, Issue.20
, pp. 205503
-
-
Liu, Z.1
Yang, J.R.2
Grey, F.3
Liu, J.Z.4
Liu, Y.L.5
Wang, Y.B.6
Yang, Y.L.7
Cheng, Y.8
Zheng, Q.S.9
-
23
-
-
84879473208
-
Observation of high-speed microscale superlubricity in graphite
-
10.1103/PhysRevLett.110.255504
-
Yang J R, Liu Z, Grey F, Xu Z P, Li X D, Liu YL, Urbakh M, Cheng Y, Zheng Q S. Observation of high-speed microscale superlubricity in graphite. Phys Rev Lett 110(25): 255504 (2013)
-
(2013)
Phys Rev Lett
, vol.110
, Issue.25
, pp. 255504
-
-
Yang, J.R.1
Liu, Z.2
Grey, F.3
Xu, Z.P.4
Li, X.D.5
Liu, Y.L.6
Urbakh, M.7
Cheng, Y.8
Zheng, Q.S.9
-
24
-
-
84890570808
-
Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions
-
10.1038/nnano.2013.217
-
Zhang R F, Ning Z Y, Zhang Y Y, Zheng Q-S, Cheng Q, Xie H H, Zhang Q, Qian W Z, Wei F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 8: 912–916 (2013)
-
(2013)
Nat Nanotechnol
, vol.8
, pp. 912-916
-
-
Zhang, R.F.1
Ning, Z.Y.2
Zhang, Y.Y.3
Zheng, Q.-S.4
Cheng, Q.5
Xie, H.H.6
Zhang, Q.7
Qian, W.Z.8
Wei, F.9
-
25
-
-
84883146787
-
Atomic roughness enhanced friction on hydrogenated graphene
-
10.1088/0957-4484/24/37/375701
-
Dong Y L, Wu X W, Martini A. Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24(37): 375701 (2013)
-
(2013)
Nanotechnology
, vol.24
, Issue.37
, pp. 375701
-
-
Dong, Y.L.1
Wu, X.W.2
Martini, A.3
-
26
-
-
56349130836
-
Superlubricity of dry nanocontacts
-
10.1088/0953-8984/20/35/354004
-
Gnecco E, Maier S, Meyer E. Superlubricity of dry nanocontacts. J Phys-Condens Mat 20(35): 354004 (2008)
-
(2008)
J Phys-Condens Mat
, vol.20
, Issue.35
, pp. 354004
-
-
Gnecco, E.1
Maier, S.2
Meyer, E.3
-
27
-
-
0032540059
-
Microscopic determination of the interlayer binding energy in graphite
-
10.1016/S0009-2614(97)01466-8
-
Benedict L X, Chopra N G, Cohen M L, Zettl A, Louie S G, Crespi V H. Microscopic determination of the interlayer binding energy in graphite. Chem Phys Lett 286(5–6): 490–496 (1998)
-
(1998)
Chem Phys Lett
, vol.286
, Issue.5-6
, pp. 490-496
-
-
Benedict, L.X.1
Chopra, N.G.2
Cohen, M.L.3
Zettl, A.4
Louie, S.G.5
Crespi, V.H.6
-
28
-
-
42749102313
-
Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons
-
10.1103/PhysRevB.69.155406
-
Zacharia R, Ulbricht H, Hertel T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69(15): 155406 (2004)
-
(2004)
Phys Rev B
, vol.69
, Issue.15
, pp. 155406
-
-
Zacharia, R.1
Ulbricht, H.2
Hertel, T.3
-
29
-
-
71649105462
-
Electron microscopy analyses of natural and highly oriented pyrolytic graphites and the mechanically exfoliated graphenes produced from them
-
10.1016/j.carbon.2009.10.030
-
Park S, Floresca H C, Suh Y, Kim M J. Electron microscopy analyses of natural and highly oriented pyrolytic graphites and the mechanically exfoliated graphenes produced from them. Carbon 48(3): 797–804 (2010)
-
(2010)
Carbon
, vol.48
, Issue.3
, pp. 797-804
-
-
Park, S.1
Floresca, H.C.2
Suh, Y.3
Kim, M.J.4
-
30
-
-
33646694969
-
Optical knife-edge technique for nanomechanical displacement detection
-
10.1063/1.2203513
-
Karabacak D, Kouh T, Huang C C, Ekinci K L. Optical knife-edge technique for nanomechanical displacement detection. Appl Phys Lett 88(19): 193122 (2006)
-
(2006)
Appl Phys Lett
, vol.88
, Issue.19
, pp. 193122
-
-
Karabacak, D.1
Kouh, T.2
Huang, C.C.3
Ekinci, K.L.4
-
31
-
-
77951596296
-
100 mm long, semiconducting triple-walled carbon nanotubes
-
10.1002/adma.200902746
-
Wen Q, Qian W Z, Nie J Q, Cao A Y, Ning G Q, Wang Y, Hu L, Zhang Q, Huang J Q, Wei F. 100 mm long, semiconducting triple-walled carbon nanotubes. Adv Mater 22(16): 1867–1871 (2010)
-
(2010)
Adv Mater
, vol.22
, Issue.16
, pp. 1867-1871
-
-
Wen, Q.1
Qian, W.Z.2
Nie, J.Q.3
Cao, A.Y.4
Ning, G.Q.5
Wang, Y.6
Hu, L.7
Zhang, Q.8
Huang, J.Q.9
Wei, F.10
-
32
-
-
84893949466
-
Graphene: A new emerging lubricant
-
10.1016/j.mattod.2013.12.003
-
Berman D, Erdemir A, Sumant A V. Graphene: A new emerging lubricant. Mater Today 17(1): 31–42 (2014)
-
(2014)
Mater Today
, vol.17
, Issue.1
, pp. 31-42
-
-
Berman, D.1
Erdemir, A.2
Sumant, A.V.3
-
33
-
-
2342523282
-
Design criteria for superlubricity in carbon films and related microstructures
-
10.1016/j.triboint.2003.12.007
-
Erdemir A. Design criteria for superlubricity in carbon films and related microstructures. Tribol Int 37(7): 577–583 (2004)
-
(2004)
Tribol Int
, vol.37
, Issue.7
, pp. 577-583
-
-
Erdemir, A.1
-
34
-
-
0037185413
-
Multiwalled carbon nanotubes as gigahertz oscillators
-
10.1103/PhysRevLett.88.045503
-
Zheng Q S, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Phys Rev Lett 88(4): 045503 (2002)
-
(2002)
Phys Rev Lett
, vol.88
, Issue.4
, pp. 045503
-
-
Zheng, Q.S.1
Jiang, Q.2
-
35
-
-
0037098473
-
Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation
-
10.1103/PhysRevB.65.245409
-
Zheng Q S, Liu J Z, Jiang Q. Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Phys Rev B 65(24): 245409 (2002)
-
(2002)
Phys Rev B
, vol.65
, Issue.24
, pp. 245409
-
-
Zheng, Q.S.1
Liu, J.Z.2
Jiang, Q.3
-
36
-
-
84875715128
-
Developing nanoscale inertial sensor based on graphite-flake with self-retracting motion
-
10.1016/j.physe.2013.02.025
-
Kim S Y, Cho S Y, Kim K S, Kang J W. Developing nanoscale inertial sensor based on graphite-flake with self-retracting motion. Physica E 50: 44–50 (2013)
-
(2013)
Physica E
, vol.50
, pp. 44-50
-
-
Kim, S.Y.1
Cho, S.Y.2
Kim, K.S.3
Kang, J.W.4
-
37
-
-
84859396973
-
Graphite flake self-retraction response based on potential seeking
-
10.1186/1556-276X-7-185
-
Ng T W, Lau C Y, Bernados-Chamagne E, Liu J Z, Sheridan J, Tan N. Graphite flake self-retraction response based on potential seeking. Nanoscale Res Lett 7: 1–9 (2012)
-
(2012)
Nanoscale Res Lett
, vol.7
, pp. 1-9
-
-
Ng, T.W.1
Lau, C.Y.2
Bernados-Chamagne, E.3
Liu, J.Z.4
Sheridan, J.5
Tan, N.6
-
38
-
-
84883542731
-
Nonvolatile graphene nanoflake shuttle memory
-
10.1016/j.physe.2013.08.009
-
Hwang H J, Kang J W. Nonvolatile graphene nanoflake shuttle memory. Physica E 56:17–23 (2014)
-
(2014)
Physica E
, vol.56
, pp. 17-23
-
-
Hwang, H.J.1
Kang, J.W.2
|