-
1
-
-
84907419933
-
Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor
-
IEEE
-
C. Brandli, L. Muller, and T. Delbruck. Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pages 686-689. IEEE, 2014.
-
(2014)
2014 IEEE International Symposium on Circuits and Systems (ISCAS)
, pp. 686-689
-
-
Brandli, C.1
Muller, L.2
Delbruck, T.3
-
2
-
-
84950988629
-
Spiking deep convolutional neural networks for energy-efficient object recognition
-
Y. Cao, Y. Chen, and D. Khosla. Spiking deep convolutional neural networks for energy-efficient object recognition. International Journal of Computer Vision, pages 1-13, 2014.
-
(2014)
International Journal of Computer Vision
, pp. 1-13
-
-
Cao, Y.1
Chen, Y.2
Khosla, D.3
-
3
-
-
84951159868
-
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing
-
P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In International Joint Conference on Neural Networks (IJCNN), 2015.
-
(2015)
International Joint Conference on Neural Networks (IJCNN)
-
-
Diehl, P.U.1
Neil, D.2
Binas, J.3
Cook, M.4
Liu, S.-C.5
Pfeiffer, M.6
-
4
-
-
84862236095
-
Comparison between frame-constrained fix-pixel-value and frame-free spiking-dynamic-pixel convnets for visual processing
-
C. Farabet et al. Comparison between frame-constrained fix-pixel-value and frame-free spiking-dynamic-pixel convnets for visual processing. Frontiers in Neuroscience, 6, 2012.
-
(2012)
Frontiers in Neuroscience
, pp. 6
-
-
Farabet, C.1
-
5
-
-
84900504664
-
The SpiNNaker project
-
S. Furber, F. Galluppi, S. Temple, and L. Plana. The SpiNNaker Project. Proceedings of the IEEE, 102(5):652-665, 2014.
-
(2014)
Proceedings of the IEEE
, vol.102
, Issue.5
, pp. 652-665
-
-
Furber, S.1
Galluppi, F.2
Temple, S.3
Plana, L.4
-
7
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82-97, 2012.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A-.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
-
9
-
-
33244465845
-
A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity
-
G. Indiveri, E. Chicca, and R. Douglas. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans on Neural Networks, 17(1):211-221, 2006.
-
(2006)
IEEE Trans on Neural Networks
, vol.17
, Issue.1
, pp. 211-221
-
-
Indiveri, G.1
Chicca, E.2
Douglas, R.3
-
10
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
11
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
13
-
-
84905915006
-
A million spiking-neuron integrated circuit with a scalable communication network and interface
-
P. Merolla et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197):668-673, 2014.
-
(2014)
Science
, vol.345
, Issue.6197
, pp. 668-673
-
-
Merolla, P.1
-
14
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
-
16
-
-
84888811418
-
Real-time classification and sensor fusion with a spiking Deep Belief Network
-
P. O'Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer. Real-time classification and sensor fusion with a spiking Deep Belief Network. Frontiers in Neuroscience, 7, 2013.
-
(2013)
Frontiers in Neuroscience
, pp. 7
-
-
O'Connor, P.1
Neil, D.2
Liu, S.-C.3
Delbruck, T.4
Pfeiffer, M.5
-
18
-
-
84884548464
-
Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing-Application to feedforward ConvNets
-
J. Pérez-Carrasco and others. Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing-Application to feedforward ConvNets. IEEE Trans on Pattern Analysis and Machine Intelligence, 35(11):2706-2719, 2013.
-
(2013)
IEEE Trans on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.11
, pp. 2706-2719
-
-
Pérez-Carrasco, J.1
-
19
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
C. Poultney, S. Chopra, Y. L. Cun, et al. Efficient learning of sparse representations with an energy-based model. In Proc. of NIPS, pages 1137-1144, 2006.
-
(2006)
Proc. of NIPS
, pp. 1137-1144
-
-
Poultney, C.1
Chopra, S.2
Cun, Y.L.3
-
21
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929-1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
22
-
-
84946230589
-
Live demonstration: Handwritten digit recognition using spiking Deep Belief Networks on SpiNNaker
-
E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber. Live demonstration: handwritten digit recognition using spiking Deep Belief Networks on SpiNNaker. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1901-1901, 2015.
-
(2015)
2015 IEEE International Symposium on Circuits and Systems (ISCAS)
, pp. 1901
-
-
Stromatias, E.1
Neil, D.2
Galluppi, F.3
Pfeiffer, M.4
Liu, S.-C.5
Furber, S.6
-
23
-
-
84964983441
-
-
arXiv preprint arXiv:1409.4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
|