메뉴 건너뛰기




Volumn 44, Issue 1, 2018, Pages 89-122

Convex Optimization approach to signals with fast varying instantaneous frequency

Author keywords

Chirp factor; Convex optimization; FISTA; Instantaneous frequency; Time frequency analysis

Indexed keywords

APPROXIMATION ALGORITHMS; CONVEX OPTIMIZATION; ITERATIVE METHODS; TIME VARYING NETWORKS;

EID: 84975166544     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2016.03.008     Document Type: Article
Times cited : (38)

References (54)
  • 2
    • 0029306339 scopus 로고
    • Improving the readability of time-frequency and time-scale representations by the reassignment method
    • Auger, F., Flandrin, P., Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 43:5 (May 1995), 1068–1089.
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.5 , pp. 1068-1089
    • Auger, F.1    Flandrin, P.2
  • 3
    • 80955130704 scopus 로고    scopus 로고
    • Theory, implementation and applications of nonstationary Gabor frames
    • Balazs, P., Dörfler, M., Jaillet, F., Holighaus, N., Velasco, G., Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math. 236:6 (2011), 1481–1496.
    • (2011) J. Comput. Appl. Math. , vol.236 , Issue.6 , pp. 1481-1496
    • Balazs, P.1    Dörfler, M.2    Jaillet, F.3    Holighaus, N.4    Velasco, G.5
  • 4
    • 70350593691 scopus 로고    scopus 로고
    • Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
    • Beck, A., Teboulle, M., Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18:11 (2009), 2419–2434.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.11 , pp. 2419-2434
    • Beck, A.1    Teboulle, M.2
  • 5
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A., Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2:1 (2009), 183–202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 6
    • 84905580784 scopus 로고    scopus 로고
    • Proximal alternating linearized minimization for nonconvex and nonsmooth problems
    • Bolte, J., Sabach, S., Teboulle, M., Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146:1–2 (2014), 459–494.
    • (2014) Math. Program. , vol.146 , Issue.1-2 , pp. 459-494
    • Bolte, J.1    Sabach, S.2    Teboulle, M.3
  • 7
    • 85030670016 scopus 로고    scopus 로고
    • On the convergence of the iterates of FISTA, Preprint hal-01060130, September 2014.
    • A. Chambolle, C. Dossal, On the convergence of the iterates of FISTA, Preprint hal-01060130, September 2014.
    • Chambolle, A.1    Dossal, C.2
  • 9
    • 84900032456 scopus 로고    scopus 로고
    • Nonparametric and adaptive modeling of dynamic seasonality and trend with heteroscedastic and dependent errors
    • Chen, Y.-C., Cheng, M.-Y., Wu, H.-T., Nonparametric and adaptive modeling of dynamic seasonality and trend with heteroscedastic and dependent errors. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 (2014), 651–682.
    • (2014) J. R. Stat. Soc. Ser. B. Stat. Methodol. , vol.76 , pp. 651-682
    • Chen, Y.-C.1    Cheng, M.-Y.2    Wu, H.-T.3
  • 10
    • 84948401909 scopus 로고    scopus 로고
    • Real-time dynamics acquisition from irregular samples – with application to anesthesia evaluation
    • accepted for publication
    • Chui, C.K., Lin, Y.-T., Wu, H.-T., Real-time dynamics acquisition from irregular samples – with application to anesthesia evaluation. Anal. Appl., 2015, 10.1142/S0219530515500165 accepted for publication.
    • (2015) Anal. Appl.
    • Chui, C.K.1    Lin, Y.-T.2    Wu, H.-T.3
  • 11
    • 84955652784 scopus 로고    scopus 로고
    • Signal decomposition and analysis via extraction of frequencies
    • Chui, C.K., Mhaskar, H.N., Signal decomposition and analysis via extraction of frequencies. Appl. Comput. Harmon. Anal. 40:1 (2016), 97–1360.
    • (2016) Appl. Comput. Harmon. Anal. , vol.40 , Issue.1 , pp. 97-1360
    • Chui, C.K.1    Mhaskar, H.N.2
  • 12
    • 84961175676 scopus 로고    scopus 로고
    • Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis
    • arXiv:1411.6051, preprint
    • Cicone, A., Liu, J., Zhou, H., Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. preprint arXiv:1411.6051, 2014.
    • (2014)
    • Cicone, A.1    Liu, J.2    Zhou, H.3
  • 13
    • 85019055257 scopus 로고    scopus 로고
    • Multidimensional iterative filtering method for the decomposition of high-dimensional non-stationary signals
    • arXiv:1507.07173, preprint
    • Cicone, A., Zhou, H., Multidimensional iterative filtering method for the decomposition of high-dimensional non-stationary signals. preprint arXiv:1507.07173, 2015.
    • (2015)
    • Cicone, A.1    Zhou, H.2
  • 15
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward–backward splitting
    • Combettes, P.L., Wajs, V.R., Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4:4 (2005), 1168–1200.
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 16
    • 78751584911 scopus 로고    scopus 로고
    • Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool
    • Daubechies, I., Lu, J., Wu, H.-T., Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30 (2011), 243–261.
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , pp. 243-261
    • Daubechies, I.1    Lu, J.2    Wu, H.-T.3
  • 17
    • 85130292704 scopus 로고    scopus 로고
    • A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models
    • Daubechies, I., Maes, S., A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. Wavelets in Medicine and Biology, 1996, 527–546.
    • (1996) Wavelets in Medicine and Biology , pp. 527-546
    • Daubechies, I.1    Maes, S.2
  • 18
    • 84960371692 scopus 로고    scopus 로고
    • ConceFT: Concentration of frequency and time via a multitapered synchrosqueezing transform
    • accepted for publication, 2015
    • Daubechies, I., Wang, Y., Wu, H.-T., ConceFT: Concentration of frequency and time via a multitapered synchrosqueezing transform. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 374(2065), 2016, 10.1098/rsta.2015.0193 accepted for publication, 2015.
    • (2016) Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.374 , Issue.2065
    • Daubechies, I.1    Wang, Y.2    Wu, H.-T.3
  • 19
    • 84855999011 scopus 로고    scopus 로고
    • Forecasting time series with complex seasonal patterns using exponential smoothing
    • De Livera, A.M., Hyndman, R.J., Snyder, R.D., Forecasting time series with complex seasonal patterns using exponential smoothing. J. Amer. Statist. Assoc. 106:496 (2011), 1513–1527.
    • (2011) J. Amer. Statist. Assoc. , vol.106 , Issue.496 , pp. 1513-1527
    • De Livera, A.M.1    Hyndman, R.J.2    Snyder, R.D.3
  • 22
    • 34648871101 scopus 로고    scopus 로고
    • Time-Frequency/Time-Scale Analysis
    • Academic Press Inc.
    • Flandrin, P., Time-Frequency/Time-Scale Analysis. Wavelet Analysis and its Applications, vol. 10, 1999, Academic Press Inc.
    • (1999) Wavelet Analysis and its Applications , vol.10
    • Flandrin, P.1
  • 23
    • 0034934351 scopus 로고    scopus 로고
    • Time frequency and chirps
    • Flandrin, P., Time frequency and chirps. Proc. SPIE, vol. 4391, 2001, 161–175.
    • (2001) Proc. SPIE , vol.4391 , pp. 161-175
    • Flandrin, P.1
  • 24
    • 84907312953 scopus 로고    scopus 로고
    • On a non-local spectrogram for denoising one-dimensional signals
    • Galiano, G., Velasco, J., On a non-local spectrogram for denoising one-dimensional signals. Appl. Math. Comput. 244 (2014), 1–13.
    • (2014) Appl. Math. Comput. , vol.244 , pp. 1-13
    • Galiano, G.1    Velasco, J.2
  • 25
    • 84880891329 scopus 로고    scopus 로고
    • Empirical wavelet transform
    • Gilles, J., Empirical wavelet transform. IEEE Trans. Signal Process. 61:16 (2013), 3999–4010.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.16 , pp. 3999-4010
    • Gilles, J.1
  • 26
    • 69649095451 scopus 로고    scopus 로고
    • 1-minimization: methodology and convergence
    • 1-minimization: methodology and convergence. SIAM J. Optim. 19:3 (2008), 1107–1130.
    • (2008) SIAM J. Optim. , vol.19 , Issue.3 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 27
    • 84878591286 scopus 로고    scopus 로고
    • Data-driven time-frequency analysis
    • Hou, T., Shi, Z., Data-driven time-frequency analysis. Appl. Comput. Harmon. Anal. 35:2 (2013), 284–308.
    • (2013) Appl. Comput. Harmon. Anal. , vol.35 , Issue.2 , pp. 284-308
    • Hou, T.1    Shi, Z.2
  • 28
    • 84893289207 scopus 로고    scopus 로고
    • Sparse time-frequency representation of nonlinear and nonstationary data
    • Hou, T., Shi, Z., Sparse time-frequency representation of nonlinear and nonstationary data. Sci. China Math. 56:12 (2013), 2489–2506.
    • (2013) Sci. China Math. , vol.56 , Issue.12 , pp. 2489-2506
    • Hou, T.1    Shi, Z.2
  • 29
    • 80052641966 scopus 로고    scopus 로고
    • Adaptive data analysis via sparse time-frequency representation
    • Hou, T.Y., Shi, Z., Adaptive data analysis via sparse time-frequency representation. Adv. Adapt. Data Anal. 3:1/2 (2011), 1–28.
    • (2011) Adv. Adapt. Data Anal. , vol.3 , Issue.1-2 , pp. 1-28
    • Hou, T.Y.1    Shi, Z.2
  • 30
    • 78751565516 scopus 로고    scopus 로고
    • Convergence of a convolution-filtering-based algorithm for empirical mode decomposition
    • Huang, C., Wang, Y., Yang, L., Convergence of a convolution-filtering-based algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 1:4 (2009), 561–571.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.4 , pp. 561-571
    • Huang, C.1    Wang, Y.2    Yang, L.3
  • 32
    • 85049767123 scopus 로고    scopus 로고
    • Synchrosqueezing s-transform and its application in seismic spectral decomposition
    • Huang, Z., Zhang, J., Zhao, T., Sun, Y., Synchrosqueezing s-transform and its application in seismic spectral decomposition. IEEE Trans. Geosci. Remote Sens. PP:99 (2015), 1–9.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.PP , Issue.99 , pp. 1-9
    • Huang, Z.1    Zhang, J.2    Zhao, T.3    Sun, Y.4
  • 33
    • 34250778851 scopus 로고    scopus 로고
    • Long-term progression and outcomes with aging in patients with lone atrial fibrillation: a 30-year follow-up study
    • Jahangir, A., Lee, V., Friedman, P.A., Trusty, J.M., Hodge, D.O., et al. Long-term progression and outcomes with aging in patients with lone atrial fibrillation: a 30-year follow-up study. Circulation 115 (2007), 3050–3056.
    • (2007) Circulation , vol.115 , pp. 3050-3056
    • Jahangir, A.1    Lee, V.2    Friedman, P.A.3    Trusty, J.M.4    Hodge, D.O.5
  • 35
    • 84862801789 scopus 로고    scopus 로고
    • A generalized synchrosqueezing transform for enhancing signal time-frequency representation
    • Li, C., Liang, M., A generalized synchrosqueezing transform for enhancing signal time-frequency representation. Signal Process. 92:9 (2012), 2264–2274.
    • (2012) Signal Process. , vol.92 , Issue.9 , pp. 2264-2274
    • Li, C.1    Liang, M.2
  • 36
    • 84930226973 scopus 로고    scopus 로고
    • Dynamical origin of near- and below-threshold harmonic generation of Cs in an intense mid-infrared laser field
    • Li, P.-C., Sheu, Y.-L., Laughlin, C., Chu, S.-I., Dynamical origin of near- and below-threshold harmonic generation of Cs in an intense mid-infrared laser field. Nat. Commun., 6, 2015.
    • (2015) Nat. Commun. , vol.6
    • Li, P.-C.1    Sheu, Y.-L.2    Laughlin, C.3    Chu, S.-I.4
  • 37
    • 77958129911 scopus 로고    scopus 로고
    • Iterative filtering as an alternative for empirical mode decomposition
    • Lin, L., Wang, Y., Zhou, H., Iterative filtering as an alternative for empirical mode decomposition. Adv. Adapt. Data Anal. 1:4 (2009), 543–560.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.4 , pp. 543-560
    • Lin, L.1    Wang, Y.2    Zhou, H.3
  • 38
    • 84942875521 scopus 로고    scopus 로고
    • On the uniqueness of sparse time-frequency representation of multiscale data
    • Liu, C., Hou, T.Y., Shi, Z., On the uniqueness of sparse time-frequency representation of multiscale data. Multiscale Model. Simul. 13:3 (2015), 790–811.
    • (2015) Multiscale Model. Simul. , vol.13 , Issue.3 , pp. 790-811
    • Liu, C.1    Hou, T.Y.2    Shi, Z.3
  • 39
    • 67650414322 scopus 로고    scopus 로고
    • On the performance of algorithms for the minimization of 1-penalized functionals
    • Loris, Ignace, On the performance of algorithms for the minimization of 1-penalized functionals. Inverse Probl., 25(3), 2009, 035008.
    • (2009) Inverse Probl. , vol.25 , Issue.3
    • Loris, I.1
  • 40
    • 0029403345 scopus 로고
    • The chirplet transform: physical considerations
    • Mann, S., Haykin, S., The chirplet transform: physical considerations. IEEE Trans. Signal Process. 43:11 (1995), 2745–2761.
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.11 , pp. 2745-2761
    • Mann, S.1    Haykin, S.2
  • 41
    • 0000739264 scopus 로고
    • On the solution of functional equations by the method of regularization
    • Morozov, V.A., On the solution of functional equations by the method of regularization. Sov. Math., Dokl. 7:1 (1966), 414–417.
    • (1966) Sov. Math., Dokl. , vol.7 , Issue.1 , pp. 414-417
    • Morozov, V.A.1
  • 42
    • 84860000307 scopus 로고    scopus 로고
    • An alternative formulation for the empirical mode decomposition
    • Oberlin, T., Meignen, S., Perrier, V., An alternative formulation for the empirical mode decomposition. IEEE Trans. Signal Process. 60:5 (2012), 2236–2246.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.5 , pp. 2236-2246
    • Oberlin, T.1    Meignen, S.2    Perrier, V.3
  • 43
    • 84922822318 scopus 로고    scopus 로고
    • Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations
    • Oberlin, T., Meignen, S., Perrier, V., Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations. IEEE Trans. Signal Process. 63:5 (March 2015), 1335–1344.
    • (2015) IEEE Trans. Signal Process. , vol.63 , Issue.5 , pp. 1335-1344
    • Oberlin, T.1    Meignen, S.2    Perrier, V.3
  • 44
    • 84899620975 scopus 로고    scopus 로고
    • Empirical mode decomposition revisited by multicomponent non-smooth convex optimization
    • Pustelnik, N., Borgnat, P., Flandrin, P., Empirical mode decomposition revisited by multicomponent non-smooth convex optimization. Signal Process. 102:0 (2014), 313–331.
    • (2014) Signal Process. , vol.102 , pp. 313-331
    • Pustelnik, N.1    Borgnat, P.2    Flandrin, P.3
  • 45
    • 84924366841 scopus 로고    scopus 로고
    • An optimally concentrated Gabor transform for localized time-frequency components
    • Ricaud, B., Stempfel, G., Torrésani, B., An optimally concentrated Gabor transform for localized time-frequency components. Adv. Comput. Math. 40 (2014), 683–702.
    • (2014) Adv. Comput. Math. , vol.40 , pp. 683-702
    • Ricaud, B.1    Stempfel, G.2    Torrésani, B.3
  • 46
    • 84957029125 scopus 로고    scopus 로고
    • Exploring laser-driven quantum phenomena from a time-frequency analysis perspective: a comprehensive study
    • Sheu, Y.-L., Wu, H.-T., Hsu, L.-Y., Exploring laser-driven quantum phenomena from a time-frequency analysis perspective: a comprehensive study. Opt. Express 23 (2015), 30459–30482.
    • (2015) Opt. Express , vol.23 , pp. 30459-30482
    • Sheu, Y.-L.1    Wu, H.-T.2    Hsu, L.-Y.3
  • 47
    • 0030127735 scopus 로고    scopus 로고
    • Localization of the complex spectrum: the S transform
    • Stockwell, R.G., Mansinha, L., Lowe, R.P., Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process. 44:4 (1996), 998–1001.
    • (1996) IEEE Trans. Signal Process. , vol.44 , Issue.4 , pp. 998-1001
    • Stockwell, R.G.1    Mansinha, L.2    Lowe, R.P.3
  • 48
    • 84920000800 scopus 로고    scopus 로고
    • Extraction of intrawave signals using the sparse time-frequency representation method
    • Tavallali, P., Hou, T., Shi, Z., Extraction of intrawave signals using the sparse time-frequency representation method. Multiscale Model. Simul. 12:4 (2014), 1458–1493.
    • (2014) Multiscale Model. Simul. , vol.12 , Issue.4 , pp. 1458-1493
    • Tavallali, P.1    Hou, T.2    Shi, Z.3
  • 49
    • 77958113563 scopus 로고    scopus 로고
    • Approximation accuracy, gradient methods, and error bound for structured convex optimization
    • Tseng, P., Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Program. 125:2 (2010), 263–295.
    • (2010) Math. Program. , vol.125 , Issue.2 , pp. 263-295
    • Tseng, P.1
  • 50
    • 2442557820 scopus 로고    scopus 로고
    • Topics in Optimal Transportation
    • American Mathematical Society
    • Villanic, C., Topics in Optimal Transportation. Graduate Studies in Mathematics, 2003, American Mathematical Society.
    • (2003) Graduate Studies in Mathematics
    • Villanic, C.1
  • 51
    • 84878555758 scopus 로고    scopus 로고
    • Instantaneous frequency and wave shape functions (I)
    • Wu, H.-T., Instantaneous frequency and wave shape functions (I). Appl. Comput. Harmon. Anal. 35 (2013), 181–199.
    • (2013) Appl. Comput. Harmon. Anal. , vol.35 , pp. 181-199
    • Wu, H.-T.1
  • 52
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1 (2009), 1–41.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 53
    • 84929176725 scopus 로고    scopus 로고
    • Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions
    • Yang, H., Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions. Appl. Comput. Harmon. Anal. 39 (2014), 33–66.
    • (2014) Appl. Comput. Harmon. Anal. , vol.39 , pp. 33-66
    • Yang, H.1
  • 54
    • 0003503281 scopus 로고
    • Nonlinear Programming: A Unified Approach, vol. 196
    • Prentice-Hall Englewood Cliffs, NJ
    • Zangwill, W.I., Nonlinear Programming: A Unified Approach, vol. 196. 1969, Prentice-Hall, Englewood Cliffs, NJ.
    • (1969)
    • Zangwill, W.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.