-
1
-
-
84900032456
-
Non-parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors
-
Cheng, M.-Y., Chen, Y.-C., Wu, H.-T., Non-parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76:3 (2014), 651–682.
-
(2014)
J. R. Stat. Soc. Ser. B. Stat. Methodol.
, vol.76
, Issue.3
, pp. 651-682
-
-
Cheng, M.-Y.1
Chen, Y.-C.2
Wu, H.-T.3
-
2
-
-
85042713997
-
Multidimensional iterative filtering method for the decomposition of high-dimensional non-stationary signals
-
arXiv:1507.07173, Preprint
-
Cicone, A., Zhou, H., Multidimensional iterative filtering method for the decomposition of high-dimensional non-stationary signals. Preprint arXiv:1507.07173, 2015.
-
(2015)
-
-
Cicone, A.1
Zhou, H.2
-
3
-
-
0003733873
-
Time–Frequency Analysis: Theory and Applications
-
Prentice–Hall, Inc.
-
Cohen, L., Time–Frequency Analysis: Theory and Applications. 1995, Prentice–Hall, Inc.
-
(1995)
-
-
Cohen, L.1
-
4
-
-
78751584911
-
Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool
-
Daubechies, I., Lu, J., Wu, H.-T., Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30:2 (2011), 243–261.
-
(2011)
Appl. Comput. Harmon. Anal.
, vol.30
, Issue.2
, pp. 243-261
-
-
Daubechies, I.1
Lu, J.2
Wu, H.-T.3
-
5
-
-
84893418756
-
Variational mode decomposition
-
Dragomiretskiy, K., Zosso, D., Variational mode decomposition. IEEE Trans. Signal Process. 62:1–4 (2014), 531–544.
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, Issue.1-4
, pp. 531-544
-
-
Dragomiretskiy, K.1
Zosso, D.2
-
6
-
-
77749307356
-
Analysis of intrinsic mode functions: a PDE approach
-
El Hadji, S.D., Alexandre, R., Boudraa, A.-O., Analysis of intrinsic mode functions: a PDE approach. IEEE Signal Process. Lett. 17:4 (2010), 398–401.
-
(2010)
IEEE Signal Process. Lett.
, vol.17
, Issue.4
, pp. 398-401
-
-
El Hadji, S.D.1
Alexandre, R.2
Boudraa, A.-O.3
-
7
-
-
33745163942
-
Time-varying vibration decomposition and analysis based on the Hilbert transform
-
Feldman, M., Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295:3 (2006), 518–530.
-
(2006)
J. Sound Vib.
, vol.295
, Issue.3
, pp. 518-530
-
-
Feldman, M.1
-
8
-
-
0000293183
-
Theory of communication, part 1: the analysis of information
-
Gabor, D., Theory of communication, part 1: the analysis of information. Proc. Inst. Electr. Eng., 3 93:26 (1946), 429–441.
-
(1946)
Proc. Inst. Electr. Eng., 3
, vol.93
, Issue.26
, pp. 429-441
-
-
Gabor, D.1
-
9
-
-
34547837449
-
Statistical inference for evolving periodic functions
-
Genton, M.G., Hall, P., Statistical inference for evolving periodic functions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69:4 (2007), 643–657.
-
(2007)
J. R. Stat. Soc. Ser. B. Stat. Methodol.
, vol.69
, Issue.4
, pp. 643-657
-
-
Genton, M.G.1
Hall, P.2
-
10
-
-
84880891329
-
Empirical wavelet transform
-
Gilles, J., Empirical wavelet transform. IEEE Trans. Signal Process. 61:16 (2013), 3999–4010.
-
(2013)
IEEE Trans. Signal Process.
, vol.61
, Issue.16
, pp. 3999-4010
-
-
Gilles, J.1
-
11
-
-
0003410749
-
Foundations of Time–Frequency Analysis
-
Birkhäuser Boston
-
Gröchenig, K., Foundations of Time–Frequency Analysis. 2000, Birkhäuser, Boston.
-
(2000)
-
-
Gröchenig, K.1
-
12
-
-
0003523899
-
Hilbert Transforms in Signal Processing
-
Artech House
-
Hahn, S.L., Hilbert Transforms in Signal Processing. 1996, Artech House.
-
(1996)
-
-
Hahn, S.L.1
-
13
-
-
33749725182
-
Uniformly high order accurate essentially non-oscillatory schemes, III
-
Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R., Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71:2 (1987), 231–303.
-
(1987)
J. Comput. Phys.
, vol.71
, Issue.2
, pp. 231-303
-
-
Harten, A.1
Engquist, B.2
Osher, S.3
Chakravarthy, S.R.4
-
14
-
-
80052641966
-
Adaptive data analysis via sparse time–frequency representation
-
Hou, T.Y., Shi, Z., Adaptive data analysis via sparse time–frequency representation. Adv. Adapt. Data Anal. 3:1 (2011), 1–28.
-
(2011)
Adv. Adapt. Data Anal.
, vol.3
, Issue.1
, pp. 1-28
-
-
Hou, T.Y.1
Shi, Z.2
-
15
-
-
80052057579
-
A variant of the EMD method for multi-scale data
-
Hou, T.Y., Yan, M.P., Wu, Z., A variant of the EMD method for multi-scale data. Adv. Adapt. Data Anal. 1:4 (2009), 483–516.
-
(2009)
Adv. Adapt. Data Anal.
, vol.1
, Issue.4
, pp. 483-516
-
-
Hou, T.Y.1
Yan, M.P.2
Wu, Z.3
-
16
-
-
33644647646
-
Hilbert–Huang Transform and Its Applications, vol. 5
-
World Scientific
-
Huang, N.E., Shen, S.S., Hilbert–Huang Transform and Its Applications, vol. 5. 2005, World Scientific.
-
(2005)
-
-
Huang, N.E.1
Shen, S.S.2
-
17
-
-
1542357546
-
A confidence limit for the empirical mode decomposition and Hilbert spectral analysis
-
Huang, N.E., Wu, M.-L.C., Long, S.R., Shen, S.S.P., Qu, W., Gloersen, P., Fan, K.L., A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459:2037 (2003), 2317–2345.
-
(2003)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.459
, Issue.2037
, pp. 2317-2345
-
-
Huang, N.E.1
Wu, M.-L.C.2
Long, S.R.3
Shen, S.S.P.4
Qu, W.5
Gloersen, P.6
Fan, K.L.7
-
18
-
-
0033489494
-
A new view of nonlinear water waves: the Hilbert spectrum
-
Huang, N.E., Shen, Z., Long, S.R., A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid Mech. 31:1 (1999), 417–457.
-
(1999)
Annu. Rev. Fluid Mech.
, vol.31
, Issue.1
, pp. 417-457
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
-
19
-
-
5444236478
-
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
-
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 454(1971), 1998, 903.
-
(1998)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.454
, Issue.1971
, pp. 903
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.C.4
Shih, H.H.5
Zheng, Q.6
Yen, N.C.7
Tung, C.C.8
Liu, H.H.9
-
20
-
-
77951668826
-
On instantaneous frequency
-
Huang, N.E., Wu, Z., Long, S.R., Arnold, K.C., Chen, X., Blank, K., On instantaneous frequency. Adv. Adapt. Data Anal. 1:2 (2009), 177–229.
-
(2009)
Adv. Adapt. Data Anal.
, vol.1
, Issue.2
, pp. 177-229
-
-
Huang, N.E.1
Wu, Z.2
Long, S.R.3
Arnold, K.C.4
Chen, X.5
Blank, K.6
-
21
-
-
77958129911
-
Iterative filtering as an alternative algorithm for empirical mode decomposition
-
Lin, L., Wang, Y., Zhou, H., Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 1:4 (2009), 543–560.
-
(2009)
Adv. Adapt. Data Anal.
, vol.1
, Issue.4
, pp. 543-560
-
-
Lin, L.1
Wang, Y.2
Zhou, H.3
-
22
-
-
0031139913
-
Comments on the interpretation of instantaneous frequency
-
Loughlin, P.J., Tacer, B., Comments on the interpretation of instantaneous frequency. IEEE Signal Process. Lett. 4:5 (1997), 123–125.
-
(1997)
IEEE Signal Process. Lett.
, vol.4
, Issue.5
, pp. 123-125
-
-
Loughlin, P.J.1
Tacer, B.2
-
23
-
-
36749090569
-
A new formulation for empirical mode decomposition based on constrained optimization
-
Meignen, S., Perrier, V., A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Process. Lett. 14:12 (2007), 932–935.
-
(2007)
IEEE Signal Process. Lett.
, vol.14
, Issue.12
, pp. 932-935
-
-
Meignen, S.1
Perrier, V.2
-
24
-
-
84869751837
-
A multicomponent proximal algorithm for empirical mode decomposition
-
IEEE
-
Pustelnik, N., Borgnat, P., Flandrin, P., A multicomponent proximal algorithm for empirical mode decomposition. 2012 Proceedings of the 20th European Signal Processing Conference, EUSIPCO, 2012, IEEE, 1880–1884.
-
(2012)
2012 Proceedings of the 20th European Signal Processing Conference, EUSIPCO
, pp. 1880-1884
-
-
Pustelnik, N.1
Borgnat, P.2
Flandrin, P.3
-
25
-
-
85008018510
-
One or two frequencies? the empirical mode decomposition answers
-
Rilling, G., Flandrin, P., One or two frequencies? the empirical mode decomposition answers. IEEE Trans. Signal Process. 56:1 (2008), 85–95.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.1
, pp. 85-95
-
-
Rilling, G.1
Flandrin, P.2
-
26
-
-
71049127992
-
Sampling effects on the empirical mode decomposition
-
Rilling, G., Flandrin, P., Sampling effects on the empirical mode decomposition. Adv. Adapt. Data Anal. 1:01 (2009), 43–59.
-
(2009)
Adv. Adapt. Data Anal.
, vol.1
, Issue.1
, pp. 43-59
-
-
Rilling, G.1
Flandrin, P.2
-
27
-
-
1642457413
-
On empirical mode decomposition and its algorithms
-
Rilling, G., Flandrin, P., Goncalves, P., et al. On empirical mode decomposition and its algorithms. IEEE–EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3, NSIP-03, Grado (I), 2003, 8–11.
-
(2003)
IEEE–EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3, NSIP-03, Grado (I)
, pp. 8-11
-
-
Rilling, G.1
Flandrin, P.2
Goncalves, P.3
-
28
-
-
80051471430
-
Resonance-based signal decomposition: a new sparsity-enabled signal analysis method
-
Selesnick, I.W., Resonance-based signal decomposition: a new sparsity-enabled signal analysis method. Signal Process. 91:12 (2011), 2793–2809.
-
(2011)
Signal Process.
, vol.91
, Issue.12
, pp. 2793-2809
-
-
Selesnick, I.W.1
-
29
-
-
33645929739
-
Analysis of the intrinsic mode functions
-
Sharpley, R.C., Vatchev, V., Analysis of the intrinsic mode functions. Constr. Approx. 24:1 (2006), 17–47.
-
(2006)
Constr. Approx.
, vol.24
, Issue.1
, pp. 17-47
-
-
Sharpley, R.C.1
Vatchev, V.2
-
30
-
-
0000446212
-
High order ENO and WENO schemes for computational fluid dynamics
-
Springer
-
Shu, C.-W., High order ENO and WENO schemes for computational fluid dynamics. High-Order Methods for Computational Physics, 1999, Springer, 439–582.
-
(1999)
High-Order Methods for Computational Physics
, pp. 439-582
-
-
Shu, C.-W.1
-
31
-
-
79955864245
-
Iterative filtering decomposition based on local spectral evolution kernel
-
Wang, Y., Wei, G.-W., Yang, S., Iterative filtering decomposition based on local spectral evolution kernel. J. Sci. Comput. 50:3 (2012), 629–664.
-
(2012)
J. Sci. Comput.
, vol.50
, Issue.3
, pp. 629-664
-
-
Wang, Y.1
Wei, G.-W.2
Yang, S.3
-
32
-
-
84872395367
-
Mode decomposition evolution equations
-
Wang, Y., Wei, G.-W., Yang, S., Mode decomposition evolution equations. J. Sci. Comput. 50:3 (2012), 495–518.
-
(2012)
J. Sci. Comput.
, vol.50
, Issue.3
, pp. 495-518
-
-
Wang, Y.1
Wei, G.-W.2
Yang, S.3
-
33
-
-
84901752171
-
On the convergence of iterative filtering empirical mode decomposition
-
Springer
-
Wang, Y., Zhou, Z., On the convergence of iterative filtering empirical mode decomposition. Excursions in Harmonic Analysis, vol. 2, 2013, Springer, 157–172.
-
(2013)
Excursions in Harmonic Analysis, vol. 2
, pp. 157-172
-
-
Wang, Y.1
Zhou, Z.2
-
34
-
-
0032046913
-
On the instantaneous frequencies of multicomponent AM-FM signals
-
Wei, D., Bovik, A.C., On the instantaneous frequencies of multicomponent AM-FM signals. IEEE Signal Process. Lett. 5:4 (1998), 84–86.
-
(1998)
IEEE Signal Process. Lett.
, vol.5
, Issue.4
, pp. 84-86
-
-
Wei, D.1
Bovik, A.C.2
-
35
-
-
80052631685
-
One or two frequencies? The synchrosqueezing answers
-
Wu, H.-T., Flandrin, P., Daubechies, I., One or two frequencies? The synchrosqueezing answers. Adv. Adapt. Data Anal. 3:1–2 (2011), 29–39.
-
(2011)
Adv. Adapt. Data Anal.
, vol.3
, Issue.1-2
, pp. 29-39
-
-
Wu, H.-T.1
Flandrin, P.2
Daubechies, I.3
-
36
-
-
2542525254
-
A study of the characteristics of white noise using the empirical mode decomposition method
-
Wu, Z., Huang, N.E., A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460(2046), 2004, 1597.
-
(2004)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.460
, Issue.2046
, pp. 1597
-
-
Wu, Z.1
Huang, N.E.2
-
38
-
-
80052078099
-
Ensemble empirical mode decomposition: a noise-assisted data analysis method
-
Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1:1 (2009), 1–41.
-
(2009)
Adv. Adapt. Data Anal.
, vol.1
, Issue.1
, pp. 1-41
-
-
Wu, Z.1
Huang, N.E.2
|