메뉴 건너뛰기




Volumn 102, Issue , 2014, Pages 313-331

Empirical mode decomposition revisited by multicomponent non-smooth convex optimization

Author keywords

Convex optimization; Empirical Mode Decomposition (EMD); Intrinsic mode functions (IMF); Proximal algorithms; Trend fluctuation

Indexed keywords

ALGORITHMS; CONVEX OPTIMIZATION; FUNCTIONS;

EID: 84899620975     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2014.03.014     Document Type: Article
Times cited : (55)

References (64)
  • 4
    • 0001843298 scopus 로고
    • Théorie et applications de la notion de signal analytique
    • J. Ville Théorie et applications de la notion de signal analytique Câbles Transm. 2A 1948 61 74
    • (1948) Câbles Transm. , vol.2 A , pp. 61-74
    • Ville, J.1
  • 5
    • 0020717316 scopus 로고
    • Wave modulation and breakdown
    • W.K. Meville Wave modulation and breakdown J. Fluid Mech. 128 1983 489 506
    • (1983) J. Fluid Mech. , vol.128 , pp. 489-506
    • Meville, W.K.1
  • 6
    • 84939730902 scopus 로고
    • Mathematical analysis of random noise
    • S.O. Rice Mathematical analysis of random noise Bell Syst. Tech. J. 23 1944 282 310
    • (1944) Bell Syst. Tech. J. , vol.23 , pp. 282-310
    • Rice, S.O.1
  • 7
    • 85009451451 scopus 로고    scopus 로고
    • Time-frequency re-assignment - From principles to algorithms
    • A. Papandreou-Suppappola, CRC Press Boca Raton, FL (Chapter 5)
    • P. Flandrin, F. Auger, and E. Chassande-Mottin Time-frequency re-assignment - from principles to algorithms A. Papandreou-Suppappola, Applications in Time-Frequency Signal Processing 2003 CRC Press Boca Raton, FL 179 203 (Chapter 5)
    • (2003) Applications in Time-Frequency Signal Processing , pp. 179-203
    • Flandrin, P.1    Auger, F.2    Chassande-Mottin, E.3
  • 8
    • 78751584911 scopus 로고    scopus 로고
    • Synchrosqueezed wavelet transforms an Empirical Mode Decomposition-like tool
    • I. Daubechies, J. Lu, and H.-T. Wu Synchrosqueezed wavelet transforms an Empirical Mode Decomposition-like tool Appl. Comput. Harmon. Anal. 30 2 2011 243 261
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , Issue.2 , pp. 243-261
    • Daubechies, I.1    Lu, J.2    Wu, H.-T.3
  • 10
    • 80054983989 scopus 로고    scopus 로고
    • Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples
    • G. Thakur, and H.-T. Wu Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples SIAM J. Math. Anal. 43 2011 2078 2095
    • (2011) SIAM J. Math. Anal. , vol.43 , pp. 2078-2095
    • Thakur, G.1    Wu, H.-T.2
  • 13
    • 71049127992 scopus 로고    scopus 로고
    • Sampling effects on the Empirical Mode Decomposition
    • G. Rilling, and P. Flandrin Sampling effects on the Empirical Mode Decomposition Adv. Adapt. Data Anal. 1 1 2009 43 59
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.1 , pp. 43-59
    • Rilling, G.1    Flandrin, P.2
  • 14
    • 84868201484 scopus 로고    scopus 로고
    • An optimization-based Empirical Mode Decomposition scheme
    • B. Huang, and A. Kunoth An optimization-based Empirical Mode Decomposition scheme J. Comput. Appl. Math. 240 2013 174 183
    • (2013) J. Comput. Appl. Math. , vol.240 , pp. 174-183
    • Huang, B.1    Kunoth, A.2
  • 15
    • 27844487555 scopus 로고    scopus 로고
    • Empirical mode decomposition: An analytical approach for sifting process
    • DOI 10.1109/LSP.2005.856878
    • E. Deléchelle, J. Lemoine, and O. Niang Empirical Mode Decomposition an analytical approach for sifting process IEEE Signal Process. Lett. 12 11 2005 764 767 (Pubitemid 41638128)
    • (2005) IEEE Signal Processing Letters , vol.12 , Issue.11 , pp. 764-767
    • Delechelle, E.1    Lemoine, J.2    Niang, O.3
  • 16
    • 37749039711 scopus 로고    scopus 로고
    • Investigation and performance enhancement of the Empirical Mode Decomposition method based on a heuristic search optimization approach
    • Y. Kopsinis, and S. McLaughlin Investigation and performance enhancement of the Empirical Mode Decomposition method based on a heuristic search optimization approach IEEE Trans. Signal Process. 56 1 2008 1 13
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.1 , pp. 1-13
    • Kopsinis, Y.1    McLaughlin, S.2
  • 17
    • 85008050215 scopus 로고    scopus 로고
    • Some properties of an empirical mode type signal decomposition algorithm
    • S.D. Hawley, L.E. Atlas, and H.J. Chizeck Some properties of an empirical mode type signal decomposition algorithm IEEE Signal Process. Lett. 17 1 2010 24 27
    • (2010) IEEE Signal Process. Lett. , vol.17 , Issue.1 , pp. 24-27
    • Hawley, S.D.1    Atlas, L.E.2    Chizeck, H.J.3
  • 18
    • 36749090569 scopus 로고    scopus 로고
    • A new formulation for empirical mode decomposition based on constrained optimization
    • DOI 10.1109/LSP.2007.904706
    • S. Meignen, and V. Perrier A new formulation for Empirical Mode Decomposition based on constrained optimization IEEE Signal Process. Lett. 14 12 2007 932 935 (Pubitemid 350201247)
    • (2007) IEEE Signal Processing Letters , vol.14 , Issue.12 , pp. 932-935
    • Meignen, S.1    Perrier, V.2
  • 19
    • 84860000307 scopus 로고    scopus 로고
    • An alternative formulation for the Empirical Mode Decomposition
    • T. Oberlin, S. Meignen, and V. Perrier An alternative formulation for the Empirical Mode Decomposition IEEE Trans. Signal Process. 60 5 2012 2236 2246
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.5 , pp. 2236-2246
    • Oberlin, T.1    Meignen, S.2    Perrier, V.3
  • 20
    • 80052641966 scopus 로고    scopus 로고
    • Adaptive data analysis via sparse time-frequency representation
    • T.Y. Hou, and Z. Shi Adaptive data analysis via sparse time-frequency representation Adv. Adapt. Data Anal. 3 1-2 2011 1 28
    • (2011) Adv. Adapt. Data Anal. , vol.3 , Issue.12 , pp. 1-28
    • Hou, T.Y.1    Shi, Z.2
  • 21
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi Nonlinear total variation based noise removal algorithms Physica D 60 1-4 1992 259 268
    • (1992) Physica D , vol.60 , Issue.14 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 22
    • 84878591286 scopus 로고    scopus 로고
    • Data-driven time-frequency analysis
    • T.Y. Hou, and Z. Shi Data-driven time-frequency analysis Appl. Comput. Harmon. Anal 35 2013 284 308
    • (2013) Appl. Comput. Harmon. Anal , vol.35 , pp. 284-308
    • Hou, T.Y.1    Shi, Z.2
  • 24
    • 33644533840 scopus 로고    scopus 로고
    • Structure-texture image decomposition - Modeling, algorithms, and parameter selection
    • J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher Structure-texture image decomposition - modeling, algorithms, and parameter selection Int. J. Comput. Vis. 67 1 2006 111 136
    • (2006) Int. J. Comput. Vis. , vol.67 , Issue.1 , pp. 111-136
    • Aujol, J.-F.1    Gilboa, G.2    Chan, T.3    Osher, S.4
  • 27
    • 27744574209 scopus 로고    scopus 로고
    • Image decomposition via the combination of sparse representations and a variational approach
    • DOI 10.1109/TIP.2005.852206
    • J.-L. Starck, M. Elad, and D. Donoho Image decomposition via the combination of sparse representations and a variational approach IEEE Trans. Image Process. 14 2005 1570 1582 (Pubitemid 41623087)
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.10 , pp. 1570-1582
    • Starck, J.-L.1    Elad, M.2    Donoho, D.L.3
  • 28
    • 78651096014 scopus 로고    scopus 로고
    • Deux méthodes de déconvolution et séparation simultanées; Application à la reconstruction des amas de galaxies
    • S. Anthoine, E. Pierpaoli, and I. Daubechies Deux méthodes de déconvolution et séparation simultanées; application à la reconstruction des amas de galaxies Trait. Signal 23 5-6 2006 439 447
    • (2006) Trait. Signal , vol.23 , Issue.56 , pp. 439-447
    • Anthoine, S.1    Pierpaoli, E.2    Daubechies, I.3
  • 29
    • 84899621472 scopus 로고    scopus 로고
    • An Unconstrained Optimization Approach to Empirical Mode Decomposition
    • Universidad Nacional de Entre Ríos
    • M. Colominas, G. Schlotthauer, M. Torres, An Unconstrained Optimization Approach to Empirical Mode Decomposition, Technical Report, Universidad Nacional de Entre Ríos, 2013.
    • (2013) Technical Report
    • Colominas, M.1    Schlotthauer, G.2    Torres, M.3
  • 30
    • 0020191832 scopus 로고
    • Image restoration by the method of convex projections: Part 1 - theory
    • D.C. Youla, and H. Webb Image restoration by the method of convex projections. Part I - theory IEEE Trans. Med. Imag. 1 2 1982 81 94 (Pubitemid 13557766)
    • (1982) IEEE Transactions on Medical Imaging , vol.MI-1 , Issue.2 , pp. 81-94
    • Youla, D.C.1    Webb, H.2
  • 32
    • 0028543165 scopus 로고
    • Inconsistent signal feasibility problems least-squares solutions in a product space
    • P.L. Combettes Inconsistent signal feasibility problems least-squares solutions in a product space IEEE Trans. Signal Process. 42 11 1994 2955 2966
    • (1994) IEEE Trans. Signal Process. , vol.42 , Issue.11 , pp. 2955-2966
    • Combettes, P.L.1
  • 34
    • 78650841059 scopus 로고    scopus 로고
    • Application of multivariate Empirical Mode Decomposition for seizure detection in EEG signals
    • Buenos Aires, Argentina
    • N. Ur Rehman, Y. Wia, D. Mandic, Application of multivariate Empirical Mode Decomposition for seizure detection in EEG signals, in: Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 2010, pp. 1650-1653.
    • (2010) Conference of the IEEE Engineering in Medicine and Biology Society , pp. 1650-1653
    • Ur Rehman, N.1    Wia, Y.2    Mandic, D.3
  • 35
    • 79952163572 scopus 로고    scopus 로고
    • Multivariate Empirical Mode Decomposition for quantifying multivariate phase synchronization
    • A. Mutlu, and S. Aviyente Multivariate Empirical Mode Decomposition for quantifying multivariate phase synchronization EURASIP J. Adv. Signal Process. 615717 2011 1 13
    • (2011) EURASIP J. Adv. Signal Process. , pp. 1-13
    • Mutlu, A.1    Aviyente, S.2
  • 36
    • 80051473062 scopus 로고    scopus 로고
    • Multivariate Empirical Mode Decomposition and application to multichannel filtering
    • J. Fleureau, A. Kachenoura, L. Albera, J.C. Nunes, and L. Senhadji Multivariate Empirical Mode Decomposition and application to multichannel filtering Signal Process. 91 12 2011 2783 2792
    • (2011) Signal Process. , vol.91 , Issue.12 , pp. 2783-2792
    • Fleureau, J.1    Kachenoura, A.2    Albera, L.3    Nunes, J.C.4    Senhadji, L.5
  • 37
    • 79952163572 scopus 로고    scopus 로고
    • Multivariate Empirical Mode Decomposition for quantifying multivariate phase synchronization
    • A. Mutlu, and S. Aviyente Multivariate Empirical Mode Decomposition for quantifying multivariate phase synchronization EURASIP J. Adv. Signal Process. 615717 2011 1 13
    • (2011) EURASIP J. Adv. Signal Process. , pp. 1-13
    • Mutlu, A.1    Aviyente, S.2
  • 39
    • 80052088164 scopus 로고    scopus 로고
    • Quantification of respiratory sinus arrythmia using Hilbert-Huang transform
    • T.B.J. Kuo, C.C.H. Yang, and N.E. Huang Quantification of respiratory sinus arrythmia using Hilbert-Huang transform Adv. Adapt. Data Anal. 1 2 2009 295 307
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.2 , pp. 295-307
    • Kuo, T.B.J.1    Yang, C.C.H.2    Huang, N.E.3
  • 40
    • 79956357196 scopus 로고    scopus 로고
    • The time-dependent intrinsic correlation based on the Empirical Mode Decomposition
    • X. Chen, Z. Wu, and N.E. Huang The time-dependent intrinsic correlation based on the Empirical Mode Decomposition Adv. Adapt. Data Anal. 2 2 2010 233 265
    • (2010) Adv. Adapt. Data Anal. , vol.2 , Issue.2 , pp. 233-265
    • Chen, X.1    Wu, Z.2    Huang, N.E.3
  • 41
    • 79951635816 scopus 로고    scopus 로고
    • Turning tangent Empirical Mode Decomposition a framework for mono- and multivariate signals
    • J. Fleureau, J.C. Nunes, A. Kachenoura, L. Albera, and L. Senhadji Turning tangent Empirical Mode Decomposition a framework for mono- and multivariate signals IEEE Trans. Signal Process. 59 3 2011 1309 1316
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.3 , pp. 1309-1316
    • Fleureau, J.1    Nunes, J.C.2    Kachenoura, A.3    Albera, L.4    Senhadji, L.5
  • 42
    • 33847675789 scopus 로고    scopus 로고
    • Complex empirical mode decomposition
    • DOI 10.1109/LSP.2006.882107
    • T. Tanaka, and D.P. Mandic Complex empirical mode decomposition IEEE Signal Process. Lett. 14 2 2007 101 104 (Pubitemid 46351330)
    • (2007) IEEE Signal Processing Letters , vol.14 , Issue.2 , pp. 101-104
    • Tanaka, T.1    Mandic, D.P.2
  • 44
    • 77952080754 scopus 로고    scopus 로고
    • Multivariate empirical mode decomposition
    • N. Rehman, and D. Mandic Multivariate empirical mode decomposition Proc. R. Soc. A 466 2010 1291 1302
    • (2010) Proc. R. Soc. A , vol.466 , pp. 1291-1302
    • Rehman, N.1    Mandic, D.2
  • 45
    • 70049113231 scopus 로고    scopus 로고
    • Sparse regression using mixed norms
    • M. Kowalski Sparse regression using mixed norms Appl. Comput. Harmon. Anal. 27 3 2009 303 324
    • (2009) Appl. Comput. Harmon. Anal. , vol.27 , Issue.3 , pp. 303-324
    • Kowalski, M.1
  • 46
    • 0000276924 scopus 로고
    • Proximité et dualité dans un espace hilbertien
    • J.J. Moreau Proximité et dualité dans un espace hilbertien Bull. Soc. Math. France 93 1965 273 299
    • (1965) Bull. Soc. Math. France , vol.93 , pp. 273-299
    • Moreau, J.J.1
  • 47
    • 84976486021 scopus 로고    scopus 로고
    • Proximal splitting methods in signal processing
    • H.H. Bauschke, R. Burachik, P.L. Combettes, V. Elser, D.R. Luke, H. Wolkowicz, Springer-Verlag New York
    • P.L. Combettes, and J.-C. Pesquet Proximal splitting methods in signal processing H.H. Bauschke, R. Burachik, P.L. Combettes, V. Elser, D.R. Luke, H. Wolkowicz, Fixed-Point Algorithms for Inverse Problems in Science and Engineering 2010 Springer-Verlag New York 185 212
    • (2010) Fixed-Point Algorithms for Inverse Problems in Science and Engineering , pp. 185-212
    • Combettes, P.L.1    Pesquet, J.-C.2
  • 50
    • 79951838072 scopus 로고    scopus 로고
    • An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
    • M.V. Afonso, J.M. Bioucas-Dias, and M.A.T. Figueiredo An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems IEEE Trans. Image Process. 20 3 2011 681 695
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.3 , pp. 681-695
    • Afonso, M.V.1    Bioucas-Dias, J.M.2    Figueiredo, M.A.T.3
  • 52
    • 77950043710 scopus 로고    scopus 로고
    • Deblurring Poissonian images by split Bregman techniques
    • S. Setzer, G. Steidl, and T. Teuber Deblurring Poissonian images by split Bregman techniques J. Vis. Commun. Image Represent. 21 3 2010 193 199
    • (2010) J. Vis. Commun. Image Represent. , vol.21 , Issue.3 , pp. 193-199
    • Setzer, S.1    Steidl, G.2    Teuber, T.3
  • 53
    • 79953201848 scopus 로고    scopus 로고
    • A first-order primal-dual algorithm for convex problems with applications to imaging
    • A. Chambolle, and T. Pock A first-order primal-dual algorithm for convex problems with applications to imaging J. Math. Imag. Vis. 40 1 2011 120 145
    • (2011) J. Math. Imag. Vis. , vol.40 , Issue.1 , pp. 120-145
    • Chambolle, A.1    Pock, T.2
  • 54
    • 84875493148 scopus 로고    scopus 로고
    • A splitting algorithm for dual monotone inclusions involving cocoercive operators
    • B.C. Vũ A splitting algorithm for dual monotone inclusions involving cocoercive operators Adv. Comput. Math. 38 2011 667 681
    • (2011) Adv. Comput. Math. , vol.38 , pp. 667-681
    • Vũ, B.C.1
  • 55
    • 84869774172 scopus 로고    scopus 로고
    • Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators
    • P.L. Combettes, and J.-C. Pesquet Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators Set-Valued Var. Anal. 20 2 2012 307 330
    • (2012) Set-Valued Var. Anal. , vol.20 , Issue.2 , pp. 307-330
    • Combettes, P.L.1    Pesquet, J.-C.2
  • 56
    • 84881083126 scopus 로고    scopus 로고
    • A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms
    • L. Condat A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms J. Optim. Theory Appl. 158 2 2013 460 479
    • (2013) J. Optim. Theory Appl. , vol.158 , Issue.2 , pp. 460-479
    • Condat, L.1
  • 57
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • E. Van Den Berg, and M.P. Friedlander Probing the Pareto frontier for basis pursuit solutions SIAM J. Sci. Comput. 31 2 2008 890 912
    • (2008) SIAM J. Sci. Comput. , vol.31 , Issue.2 , pp. 890-912
    • Van Den Berg, E.1    Friedlander, M.P.2
  • 60
    • 34548678881 scopus 로고    scopus 로고
    • A variational formulation for frame-based inverse problems
    • DOI 10.1088/0266-5611/23/4/008, PII S0266561107395865, 008
    • C. Chaux, P.L. Combettes, J.-C. Pesquet, and V.R. Wajs A variational formulation for frame-based inverse problems Inverse Probl. 23 4 2007 1495 1518 (Pubitemid 47411222)
    • (2007) Inverse Problems , vol.23 , Issue.4 , pp. 1495-1518
    • Chaux, C.1    Combettes, P.L.2    Pesquet, J.-C.3    Wajs, V.R.4
  • 61
    • 84855933316 scopus 로고    scopus 로고
    • A monotone + skew splitting model for composite monotone inclusions in duality
    • L.M. Briceño-Arias, and P.L. Combettes A monotone + skew splitting model for composite monotone inclusions in duality SIAM J. Opt. 21 4 2011 1230 1250
    • (2011) SIAM J. Opt. , vol.21 , Issue.4 , pp. 1230-1250
    • Briceño-Arias, L.M.1    Combettes, P.L.2
  • 62
    • 80052063063 scopus 로고    scopus 로고
    • EMD of Gaussian white noise effects of signal length and sifting number on the statistical properties of intrinsic mode functions
    • G. Schlotthauer, M. Torres, H. Rufiner, and P. Flandrin EMD of Gaussian white noise effects of signal length and sifting number on the statistical properties of intrinsic mode functions Adv. Adapt. Data Anal. 1 4 2009 517 527
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.4 , pp. 517-527
    • Schlotthauer, G.1    Torres, M.2    Rufiner, H.3    Flandrin, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.