-
1
-
-
84857883847
-
Macrophage plasticity and polarization: In vivo veritas
-
Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122: 787-795.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 787-795
-
-
Sica, A.1
Mantovani, A.2
-
2
-
-
84871076444
-
Macrophage plasticity and polarization in tissue repair and remodelling
-
Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. 2013. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229: 176-185.
-
(2013)
J. Pathol.
, vol.229
, pp. 176-185
-
-
Mantovani, A.1
Biswas, S.K.2
Galdiero, M.R.3
Sica, A.4
Locati, M.5
-
3
-
-
84894102230
-
Transcriptomebased network analysis reveals a spectrum model of human macrophage activation
-
Xue, J., S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs, I. Quester, D. De Nardo, T. D. Gohel, M. Emde, L. Schmidleithner, et al. 2014. Transcriptomebased network analysis reveals a spectrum model of human macrophage activation. Immunity 40: 274-288.
-
(2014)
Immunity
, vol.40
, pp. 274-288
-
-
Xue, J.1
Schmidt, S.V.2
Sander, J.3
Draffehn, A.4
Krebs, W.5
Quester, I.6
De Nardo, D.7
Gohel, T.D.8
Emde, M.9
Schmidleithner, L.10
-
4
-
-
84901056045
-
Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium
-
Hilgendorf, I., L. M. Gerhardt, T. C. Tan, C. Winter, T. A. Holderried, B. G. Chousterman, Y. Iwamoto, R. Liao, A. Zirlik, M. Scherer-Crosbie, et al. 2014. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114: 1611-1622.
-
(2014)
Circ. Res.
, vol.114
, pp. 1611-1622
-
-
Hilgendorf, I.1
Gerhardt, L.M.2
Tan, T.C.3
Winter, C.4
Holderried, T.A.5
Chousterman, B.G.6
Iwamoto, Y.7
Liao, R.8
Zirlik, A.9
Scherer-Crosbie, M.10
-
5
-
-
84870900504
-
Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
-
Zigmond, E., C. Varol, J. Farache, E. Elmaliah, A. T. Satpathy, G. Friedlander, M. Mack, N. Shpigel, I. G. Boneca, K. M. Murphy, et al. 2012. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37: 1076-1090.
-
(2012)
Immunity
, vol.37
, pp. 1076-1090
-
-
Zigmond, E.1
Varol, C.2
Farache, J.3
Elmaliah, E.4
Satpathy, A.T.5
Friedlander, G.6
Mack, M.7
Shpigel, N.8
Boneca, I.G.9
Murphy, K.M.10
-
6
-
-
0037963473
-
Blood monocytes consist of two principal subsets with distinct migratory properties
-
Geissmann, F., S. Jung, and D. R. Littman. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19: 71-82.
-
(2003)
Immunity
, vol.19
, pp. 71-82
-
-
Geissmann, F.1
Jung, S.2
Littman, D.R.3
-
7
-
-
84928254123
-
+ monocytes at a site of sterile injury
-
+ monocytes at a site of sterile injury. J. Exp. Med. 212: 447-456.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 447-456
-
-
Dal-Secco, D.1
Wang, J.2
Zeng, Z.3
Kolaczkowska, E.4
Wong, C.H.5
Petri, B.6
Ransohoff, R.M.7
Charo, I.F.8
Jenne, C.N.9
Kubes, P.10
-
8
-
-
84255197264
-
Transcriptomic analyses of murine resolution-phase macrophages
-
Stables, M. J., S. Shah, E. B. Camon, R. C. Lovering, J. Newson, J. Bystrom, S. Farrow, and D. W. Gilroy. 2011. Transcriptomic analyses of murine resolution-phase macrophages. Blood 118: e192-e208.
-
(2011)
Blood
, vol.118
, pp. e192-e208
-
-
Stables, M.J.1
Shah, S.2
Camon, E.B.3
Lovering, R.C.4
Newson, J.5
Bystrom, J.6
Farrow, S.7
Gilroy, D.W.8
-
9
-
-
84867740805
-
Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
-
Immunological Genome Consortium
-
Gautier, E. L., T. Shay, J. Miller, M. Greter, C. Jakubzick, S. Ivanov, J. Helft, A. Chow, K. G. Elpek, S. Gordonov, et al; Immunological Genome Consortium. 2012. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13: 1118-1128.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 1118-1128
-
-
Gautier, E.L.1
Shay, T.2
Miller, J.3
Greter, M.4
Jakubzick, C.5
Ivanov, S.6
Helft, J.7
Chow, A.8
Elpek, K.G.9
Gordonov, S.10
-
10
-
-
84920724791
-
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
-
Lavin, Y., D. Winter, R. Blecher-Gonen, E. David, H. Keren-Shaul, M. Merad, S. Jung, and I. Amit. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159: 1312-1326.
-
(2014)
Cell
, vol.159
, pp. 1312-1326
-
-
Lavin, Y.1
Winter, D.2
Blecher-Gonen, R.3
David, E.4
Keren-Shaul, H.5
Merad, M.6
Jung, S.7
Amit, I.8
-
11
-
-
84920724792
-
Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
-
Published erratum appears in 2015 Cell 160: 351-352
-
Gosselin, D., V. M. Link, C. E. Romanoski, G. J. Fonseca, D. Z. Eichenfield, N. J. Spann, J. D. Stender, H. B. Chun, H. Garner, F. Geissmann, and C. K. Glass. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. [Published erratum appears in 2015 Cell 160: 351-352.] Cell 159: 1327-1340.
-
(2014)
Cell
, vol.159
, pp. 1327-1340
-
-
Gosselin, D.1
Link, V.M.2
Romanoski, C.E.3
Fonseca, G.J.4
Eichenfield, D.Z.5
Spann, N.J.6
Stender, J.D.7
Chun, H.B.8
Garner, H.9
Geissmann, F.10
Glass, C.K.11
-
12
-
-
34248997759
-
Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
-
Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204: 1057-1069.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1057-1069
-
-
Arnold, L.1
Henry, A.2
Poron, F.3
Baba-Amer, Y.4
Van Rooijen, N.5
Plonquet, A.6
Gherardi, R.K.7
Chazaud, B.8
-
13
-
-
84881356321
-
AMPKa1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration
-
Mounier, R., M. Théret, L. Arnold, S. Cuvellier, L. Bultot, O. Göransson, N. Sanz, A. Ferry, K. Sakamoto, M. Foretz, et al. 2013. AMPKa1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 18: 251-264.
-
(2013)
Cell Metab.
, vol.18
, pp. 251-264
-
-
Mounier, R.1
Théret, M.2
Arnold, L.3
Cuvellier, S.4
Bultot, L.5
Göransson, O.6
Sanz, N.7
Ferry, A.8
Sakamoto, K.9
Foretz, M.10
-
14
-
-
27344435774
-
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian, A., P. Tamayo, V. K. Mootha, S.Mukherjee, B. L. Ebert,M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P.Mesirov. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102: 15545-15550.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
Tamayo, P.2
Mootha, V.K.3
Mukherjee, S.4
Ebert, B.L.5
Gillette, M.A.6
Paulovich, A.7
Pomeroy, S.L.8
Golub, T.R.9
Lander, E.S.10
Mesirov, J.P.11
-
15
-
-
84924935721
-
Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
-
Jha, A. K., S. C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova, E. Loginicheva, K. Chmielewski, K. M. Stewart, J. Ashall, B. Everts, et al. 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42: 419-430.
-
(2015)
Immunity
, vol.42
, pp. 419-430
-
-
Jha, A.K.1
Huang, S.C.2
Sergushichev, A.3
Lampropoulou, V.4
Ivanova, Y.5
Loginicheva, E.6
Chmielewski, K.7
Stewart, K.M.8
Ashall, J.9
Everts, B.10
-
16
-
-
80155206776
-
P38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair
-
Perdiguero, E., P. Sousa-Victor, V. Ruiz-Bonilla, M. Jard, C. Caelles, A. L. Serrano, and P. Muñoz-Cánoves. 2011. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J. Cell Biol. 195: 307-322.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 307-322
-
-
Perdiguero, E.1
Sousa-Victor, P.2
Ruiz-Bonilla, V.3
Jard, M.4
Caelles, C.5
Serrano, A.L.6
Muñoz-Cánoves, P.7
-
17
-
-
80051542088
-
Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration
-
Murphy, M. M., J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon. 2011. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138: 3625-3637.
-
(2011)
Development
, vol.138
, pp. 3625-3637
-
-
Murphy, M.M.1
Lawson, J.A.2
Mathew, S.J.3
Hutcheson, D.A.4
Kardon, G.5
-
18
-
-
84866348825
-
Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration
-
Le Grand, F., R. Grifone, P. Mourikis, C. Houbron, C. Gigaud, J. Pujol, M. Maillet, G. Pagès, M. Rudnicki, S. Tajbakhsh, and P. Maire. 2012. Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration. J. Cell Biol. 198: 815-832.
-
(2012)
J. Cell Biol.
, vol.198
, pp. 815-832
-
-
Le Grand, F.1
Grifone, R.2
Mourikis, P.3
Houbron, C.4
Gigaud, C.5
Pujol, J.6
Maillet, M.7
Pagès, G.8
Rudnicki, M.9
Tajbakhsh, S.10
Maire, P.11
-
19
-
-
84882645143
-
Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration
-
Saclier, M., S. Cuvellier, M. Magnan, R. Mounier, and B. Chazaud. 2013. Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS J. 280: 4118-4130.
-
(2013)
FEBS J.
, vol.280
, pp. 4118-4130
-
-
Saclier, M.1
Cuvellier, S.2
Magnan, M.3
Mounier, R.4
Chazaud, B.5
-
20
-
-
84865418665
-
Deciphering the transcriptional network of the dendritic cell lineage
-
Immunological Genome Consortium
-
Miller, J. C., B. D. Brown, T. Shay, E. L. Gautier, V. Jojic, A. Cohain, G. Pandey, M. Leboeuf, K. G. Elpek, J. Helft, et al; Immunological Genome Consortium. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13: 888-899.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 888-899
-
-
Miller, J.C.1
Brown, B.D.2
Shay, T.3
Gautier, E.L.4
Jojic, V.5
Cohain, A.6
Pandey, G.7
Leboeuf, M.8
Elpek, K.G.9
Helft, J.10
-
21
-
-
84926507971
-
Limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, and G. K. Smyth. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43: e47.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. e47
-
-
Ritchie, M.E.1
Phipson, B.2
Wu, D.3
Hu, Y.4
Law, C.W.5
Shi, W.6
Smyth, G.K.7
-
22
-
-
84888370511
-
Tissue LyC6-macrophages are generated in the absence of circulating LyC6-monocytes and Nur77 in a model of muscle regeneration
-
Varga, T., R. Mounier, P. Gogolak, S. Poliska, B. Chazaud, and L. Nagy. 2013. Tissue LyC6-macrophages are generated in the absence of circulating LyC6-monocytes and Nur77 in a model of muscle regeneration. J. Immunol. 191: 5695-5701.
-
(2013)
J. Immunol.
, vol.191
, pp. 5695-5701
-
-
Varga, T.1
Mounier, R.2
Gogolak, P.3
Poliska, S.4
Chazaud, B.5
Nagy, L.6
-
23
-
-
84897826443
-
Altered macrophage phenotype transition impairs skeletal muscle regeneration
-
Wang, H., D. W. Melton, L. Porter, Z. U. Sarwar, L. M. McManus, and P. K. Shireman. 2014. Altered macrophage phenotype transition impairs skeletal muscle regeneration. Am. J. Pathol. 184: 1167-1184.
-
(2014)
Am. J. Pathol.
, vol.184
, pp. 1167-1184
-
-
Wang, H.1
Melton, D.W.2
Porter, L.3
Sarwar, Z.U.4
McManus, L.M.5
Shireman, P.K.6
-
24
-
-
34247264995
-
Muscle satellite cells and endothelial cells: Close neighbors and privileged partners
-
Christov, C., F. Chrétien, R. Abou-Khalil, G. Bassez, G. Vallet, F. J. Authier, Y. Bassaglia, V. Shinin, S. Tajbakhsh, B. Chazaud, and R. K. Gherardi. 2007. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 18: 1397-1409.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 1397-1409
-
-
Christov, C.1
Chrétien, F.2
Abou-Khalil, R.3
Bassez, G.4
Vallet, G.5
Authier, F.J.6
Bassaglia, Y.7
Shinin, V.8
Tajbakhsh, S.9
Chazaud, B.10
Gherardi, R.K.11
-
25
-
-
79251585227
-
Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury
-
Lu, H., D. Huang, N. Saederup, I. F. Charo, R. M. Ransohoff, and L. Zhou. 2011. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 25: 358-369.
-
(2011)
FASEB J.
, vol.25
, pp. 358-369
-
-
Lu, H.1
Huang, D.2
Saederup, N.3
Charo, I.F.4
Ransohoff, R.M.5
Zhou, L.6
-
26
-
-
80051651442
-
Macrophage-specific expression of urokinase-type plasminogen activator promotes skeletal muscle regeneration
-
Novak, M. L., S. C. Bryer, M. Cheng, M. H. Nguyen, K. L. Conley, A. K. Cunningham, B. Xue, T. H. Sisson, J. S. You, T. A. Hornberger, and T. J. Koh. 2011. Macrophage-specific expression of urokinase-type plasminogen activator promotes skeletal muscle regeneration. J. Immunol. 187: 1448-1457.
-
(2011)
J. Immunol.
, vol.187
, pp. 1448-1457
-
-
Novak, M.L.1
Bryer, S.C.2
Cheng, M.3
Nguyen, M.H.4
Conley, K.L.5
Cunningham, A.K.6
Xue, B.7
Sisson, T.H.8
You, J.S.9
Hornberger, T.A.10
Koh, T.J.11
-
27
-
-
23744467927
-
Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion
-
Schulze, M., F. Belema-Bedada, A. Technau, and T. Braun. 2005. Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion. Genes Dev. 19: 1787-1798.
-
(2005)
Genes Dev.
, vol.19
, pp. 1787-1798
-
-
Schulze, M.1
Belema-Bedada, F.2
Technau, A.3
Braun, T.4
-
28
-
-
73949135779
-
Urokinase-type plasminogen activator increases hepatocyte growth factor activity required for skeletal muscle regeneration
-
Sisson, T. H., M. H. Nguyen, B. Yu, M. L. Novak, R. H. Simon, and T. J. Koh. 2009. Urokinase-type plasminogen activator increases hepatocyte growth factor activity required for skeletal muscle regeneration. Blood 114: 5052-5061.
-
(2009)
Blood
, vol.114
, pp. 5052-5061
-
-
Sisson, T.H.1
Nguyen, M.H.2
Yu, B.3
Novak, M.L.4
Simon, R.H.5
Koh, T.J.6
-
29
-
-
84934441873
-
Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization
-
Tonkin, J., L. Temmerman, R. D. Sampson, E. Gallego-Colon, L. Barberi, D. Bilbao, M. D. Schneider, A. Musarò, and N. Rosenthal. 2015. Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol. Ther. 23: 1189-1200.
-
(2015)
Mol. Ther.
, vol.23
, pp. 1189-1200
-
-
Tonkin, J.1
Temmerman, L.2
Sampson, R.D.3
Gallego-Colon, E.4
Barberi, L.5
Bilbao, D.6
Schneider, M.D.7
Musarò, A.8
Rosenthal, N.9
-
30
-
-
84904394690
-
Macrophage activation and polarization: Nomenclature and experimental guidelines
-
Published erratum appears in 2014 Immunity 41: 339-340
-
Murray, P. J., J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy, S. Goerdt, S. Gordon, J. A. Hamilton, L. B. Ivashkiv, T. Lawrence, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. [Published erratum appears in 2014 Immunity 41: 339-340.] Immunity 41: 14-20.
-
(2014)
Immunity
, vol.41
, pp. 14-20
-
-
Murray, P.J.1
Allen, J.E.2
Biswas, S.K.3
Fisher, E.A.4
Gilroy, D.W.5
Goerdt, S.6
Gordon, S.7
Hamilton, J.A.8
Ivashkiv, L.B.9
Lawrence, T.10
-
31
-
-
74849087161
-
Muscle resident macrophages control the immune cell reaction in a mouse model of notexininduced myoinjury
-
Brigitte, M., C. Schilte, A. Plonquet, Y. Baba-Amer, A. Henri, C. Charlier, S. Tajbakhsh, M. Albert, R. K. Gherardi, and F. Chrétien. 2010. Muscle resident macrophages control the immune cell reaction in a mouse model of notexininduced myoinjury. Arthritis Rheum. 62: 268-279.
-
(2010)
Arthritis Rheum.
, vol.62
, pp. 268-279
-
-
Brigitte, M.1
Schilte, C.2
Plonquet, A.3
Baba-Amer, Y.4
Henri, A.5
Charlier, C.6
Tajbakhsh, S.7
Albert, M.8
Gherardi, R.K.9
Chrétien, F.10
-
32
-
-
0033545342
-
Acute-phase proteins and other systemic responses to inflammation
-
Gabay, C., and I. Kushner. 1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340: 448-454.
-
(1999)
N. Engl. J. Med.
, vol.340
, pp. 448-454
-
-
Gabay, C.1
Kushner, I.2
-
33
-
-
81555205312
-
Inflammation-associated S100 proteins: New mechanisms that regulate function
-
Goyette, J., and C. L. Geczy. 2011. Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 41: 821-842.
-
(2011)
Amino Acids
, vol.41
, pp. 821-842
-
-
Goyette, J.1
Geczy, C.L.2
-
34
-
-
55549128598
-
The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase
-
Hiratsuka, S., A. Watanabe, Y. Sakurai, S. Akashi-Takamura, S. Ishibashi, K. Miyake, M. Shibuya, S. Akira, H. Aburatani, and Y. Maru. 2008. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 10: 1349-1355.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1349-1355
-
-
Hiratsuka, S.1
Watanabe, A.2
Sakurai, Y.3
Akashi-Takamura, S.4
Ishibashi, S.5
Miyake, K.6
Shibuya, M.7
Akira, S.8
Aburatani, H.9
Maru, Y.10
-
35
-
-
0026765045
-
Murine serum amyloid A3 is a high density apolipoprotein and is secreted by macrophages
-
Meek, R. L., N. Eriksen, and E. P. Benditt. 1992. Murine serum amyloid A3 is a high density apolipoprotein and is secreted by macrophages. Proc. Natl. Acad. Sci. USA 89: 7949-7952.
-
(1992)
Proc. Natl. Acad. Sci. USA
, vol.89
, pp. 7949-7952
-
-
Meek, R.L.1
Eriksen, N.2
Benditt, E.P.3
-
36
-
-
84907210906
-
SAA drives proinflammatory heterotypic macrophage differentiation in the lung via CSF-1Rdependent signaling
-
Anthony, D., J. L. McQualter, M. Bishara, E. X. Lim, S. Yatmaz, H. J. Seow, M. Hansen, M. Thompson, J. A. Hamilton, L. B. Irving, et al. 2014. SAA drives proinflammatory heterotypic macrophage differentiation in the lung via CSF-1Rdependent signaling. FASEB J. 28: 3867-3877.
-
(2014)
FASEB J.
, vol.28
, pp. 3867-3877
-
-
Anthony, D.1
McQualter, J.L.2
Bishara, M.3
Lim, E.X.4
Yatmaz, S.5
Seow, H.J.6
Hansen, M.7
Thompson, M.8
Hamilton, J.A.9
Irving, L.B.10
-
37
-
-
84874615861
-
Secreted protein lipocalin-2 promotes microglial M1 polarization
-
Jang, E., S. Lee, J. H. Kim, J. H. Kim, J. W. Seo, W. H. Lee, K. Mori, K. Nakao, and K. Suk. 2013. Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J. 27: 1176-1190.
-
(2013)
FASEB J.
, vol.27
, pp. 1176-1190
-
-
Jang, E.1
Lee, S.2
Kim, J.H.3
Kim, J.H.4
Seo, J.W.5
Lee, W.H.6
Mori, K.7
Nakao, K.8
Suk, K.9
-
38
-
-
3242780081
-
Monocyte/macrophage differentiation in dermatomyositis and polymyositis
-
Rostasy, K. M., M. Piepkorn, H. H. Goebel, S. Menck, F. Hanefeld, and W. J. Schulz-Schaeffer. 2004. Monocyte/macrophage differentiation in dermatomyositis and polymyositis. Muscle Nerve 30: 225-230.
-
(2004)
Muscle Nerve
, vol.30
, pp. 225-230
-
-
Rostasy, K.M.1
Piepkorn, M.2
Goebel, H.H.3
Menck, S.4
Hanefeld, F.5
Schulz-Schaeffer, W.J.6
-
39
-
-
48949120311
-
Calprotectin is released from human skeletal muscle tissue during exercise
-
Mortensen, O. H., K. Andersen, C. Fischer, A. R. Nielsen, S. Nielsen, T. Akerström, M. B. Aastrøm, R. Borup, and B. K. Pedersen. 2008. Calprotectin is released from human skeletal muscle tissue during exercise. J. Physiol. 586: 3551-3562.
-
(2008)
J. Physiol.
, vol.586
, pp. 3551-3562
-
-
Mortensen, O.H.1
Andersen, K.2
Fischer, C.3
Nielsen, A.R.4
Nielsen, S.5
Akerström, T.6
Aastrøm, M.B.7
Borup, R.8
Pedersen, B.K.9
-
40
-
-
84879382021
-
The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging
-
Thomsen, J. H., A. Etzerodt, P. Svendsen, and S. K. Moestrup. 2013. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxid. Med. Cell. Longev. 2013: 523652.
-
(2013)
Oxid. Med. Cell. Longev.
, vol.2013
, pp. 523652
-
-
Thomsen, J.H.1
Etzerodt, A.2
Svendsen, P.3
Moestrup, S.K.4
-
41
-
-
79957723868
-
Iron trafficking and metabolism in macrophages: Contribution to the polarized phenotype
-
Cairo, G., S. Recalcati, A. Mantovani, and M. Locati. 2011. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 32: 241-247.
-
(2011)
Trends Immunol.
, vol.32
, pp. 241-247
-
-
Cairo, G.1
Recalcati, S.2
Mantovani, A.3
Locati, M.4
-
42
-
-
78149250305
-
Polarization dictates iron handling by inflammatory and alternatively activated macrophages
-
Corna, G., L. Campana, E. Pignatti, A. Castiglioni, E. Tagliafico, L. Bosurgi, A. Campanella, S. Brunelli, A. A. Manfredi, P. Apostoli, et al. 2010. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95: 1814-1822.
-
(2010)
Haematologica
, vol.95
, pp. 1814-1822
-
-
Corna, G.1
Campana, L.2
Pignatti, E.3
Castiglioni, A.4
Tagliafico, E.5
Bosurgi, L.6
Campanella, A.7
Brunelli, S.8
Manfredi, A.A.9
Apostoli, P.10
-
43
-
-
77951432231
-
Release of redox-active iron by muscle crush trauma: No liberation into the circulation
-
Kerkweg, U., K. Pamp, J. Fieker, F. Petrat, R. C. Hider, and H. de Groot. 2010. Release of redox-active iron by muscle crush trauma: no liberation into the circulation. Shock 33: 513-518.
-
(2010)
Shock
, vol.33
, pp. 513-518
-
-
Kerkweg, U.1
Pamp, K.2
Fieker, J.3
Petrat, F.4
Hider, R.C.5
De Groot, H.6
-
44
-
-
84859464555
-
Orchestration of metabolism by macrophages
-
Biswas, S. K., and A. Mantovani. 2012. Orchestration of metabolism by macrophages. Cell Metab. 15: 432-437.
-
(2012)
Cell Metab.
, vol.15
, pp. 432-437
-
-
Biswas, S.K.1
Mantovani, A.2
-
45
-
-
84862016400
-
The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism
-
Haschemi, A., P. Kosma, L. Gille, C. R. Evans, C. F. Burant, P. Starkl, B. Knapp, R. Haas, J. A. Schmid, C. Jandl, et al. 2012. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15: 813-826.
-
(2012)
Cell Metab.
, vol.15
, pp. 813-826
-
-
Haschemi, A.1
Kosma, P.2
Gille, L.3
Evans, C.R.4
Burant, C.F.5
Starkl, P.6
Knapp, B.7
Haas, R.8
Schmid, J.A.9
Jandl, C.10
-
46
-
-
84931386872
-
Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism
-
Tan, Z., N. Xie, H. Cui, D. R. Moellering, E. Abraham, V. J. Thannickal, and G. Liu. 2015. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194: 6082-6089.
-
(2015)
J. Immunol.
, vol.194
, pp. 6082-6089
-
-
Tan, Z.1
Xie, N.2
Cui, H.3
Moellering, D.R.4
Abraham, E.5
Thannickal, V.J.6
Liu, G.7
-
47
-
-
84878738380
-
Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation
-
Davies, L. C., M. Rosas, S. J. Jenkins, C. T. Liao, M. J. Scurr, F. Brombacher, D. J. Fraser, J. E. Allen, S. A. Jones, and P. R. Taylor. 2013. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 4: 1886.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1886
-
-
Davies, L.C.1
Rosas, M.2
Jenkins, S.J.3
Liao, C.T.4
Scurr, M.J.5
Brombacher, F.6
Fraser, D.J.7
Allen, J.E.8
Jones, S.A.9
Taylor, P.R.10
-
48
-
-
84936889894
-
Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors
-
Lemos, D. R., F. Babaeijandaghi, M. Low, C. K. Chang, S. T. Lee, D. Fiore, R. H. Zhang, A. Natarajan, S. A. Nedospasov, and F. M. Rossi. 2015. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat. Med. 21: 786-794.
-
(2015)
Nat. Med.
, vol.21
, pp. 786-794
-
-
Lemos, D.R.1
Babaeijandaghi, F.2
Low, M.3
Chang, C.K.4
Lee, S.T.5
Fiore, D.6
Zhang, R.H.7
Natarajan, A.8
Nedospasov, S.A.9
Rossi, F.M.10
|