메뉴 건너뛰기




Volumn 65, Issue 9, 2016, Pages 2012-2022

Correcting instrumental variation and time-varying drift: A transfer learning approach with autoencoders

Author keywords

Autoencoder; calibration transfer; drift correction; electronic nose (e nose); spectroscopy; transfer learning

Indexed keywords

ALGORITHMS; FORECASTING; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 84974824084     PISSN: 00189456     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIM.2016.2573078     Document Type: Article
Times cited : (60)

References (35)
  • 1
    • 0343550880 scopus 로고
    • A brief history of electronic noses
    • J. W. Gardner and P. N. Bartlett, "A brief history of electronic noses," Sens. Actuators B, Chem., vol. 18, nos. 1-3, pp. 210-211, 1994.
    • (1994) Sens. Actuators B, Chem. , vol.18 , Issue.1-3 , pp. 210-211
    • Gardner, J.W.1    Bartlett, P.N.2
  • 2
    • 40449096268 scopus 로고    scopus 로고
    • Electronic nose: Current status and future trends
    • F. Rock, N. Barsan, and U. Weimar, "Electronic nose: Current status and future trends," Chem. Rev., vol. 108, no. 2, pp. 705-725, 2008.
    • (2008) Chem. Rev. , vol.108 , Issue.2 , pp. 705-725
    • Rock, F.1    Barsan, N.2    Weimar, U.3
  • 3
    • 84861201240 scopus 로고    scopus 로고
    • Recognition of coffee using differential electronic nose
    • Jun.
    • K. Brudzewski, S. Osowski, and A. Dwulit, "Recognition of coffee using differential electronic nose," IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1803-1810, Jun. 2012.
    • (2012) IEEE Trans. Instrum. Meas. , vol.61 , Issue.6 , pp. 1803-1810
    • Brudzewski, K.1    Osowski, S.2    Dwulit, A.3
  • 4
    • 81155123092 scopus 로고    scopus 로고
    • On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality
    • L. Zhang, et al., "On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality," Sens. Actuators B, Chem., vol. 160, no. 1, pp. 899-909, 2011.
    • (2011) Sens. Actuators B, Chem. , vol.160 , Issue.1 , pp. 899-909
    • Zhang, L.1
  • 5
    • 84908102393 scopus 로고    scopus 로고
    • Design of a breath analysis system for diabetes screening and blood glucose level prediction
    • Nov.
    • K. Yan, D. Zhang, D. Wu, H. Wei, and G. Lu, "Design of a breath analysis system for diabetes screening and blood glucose level prediction," IEEE Trans. Biomed. Eng., vol. 61, no. 11, pp. 2787-2795, Nov. 2014.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , Issue.11 , pp. 2787-2795
    • Yan, K.1    Zhang, D.2    Wu, D.3    Wei, H.4    Lu, G.5
  • 6
    • 84867701713 scopus 로고    scopus 로고
    • Signal and data processing for machine olfaction and chemical sensing: A review
    • Nov.
    • S. Marco and A. Gutierrez-Galvez, "Signal and data processing for machine olfaction and chemical sensing: A review," IEEE Sensors J., vol. 12, no. 11, pp. 3189-3214, Nov. 2012.
    • (2012) IEEE Sensors J. , vol.12 , Issue.11 , pp. 3189-3214
    • Marco, S.1    Gutierrez-Galvez, A.2
  • 9
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Oct.
    • S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 10
    • 84935860574 scopus 로고    scopus 로고
    • Improving the transfer ability of prediction models for electronic noses
    • Dec.
    • K. Yan and D. Zhang, "Improving the transfer ability of prediction models for electronic noses," Sens. Actuators B, Chem., vol. 220, pp. 115-124, Dec. 2015.
    • (2015) Sens. Actuators B, Chem. , vol.220 , pp. 115-124
    • Yan, K.1    Zhang, D.2
  • 13
    • 77951105742 scopus 로고    scopus 로고
    • Long term stability of metal oxidebased gas sensors for e-nose environmental applications: An overview
    • Apr.
    • A. C. Romain and J. Nicolas, "Long term stability of metal oxidebased gas sensors for e-nose environmental applications: An overview," Sens. Actuators B, Chem., vol. 146, no. 2, pp. 502-506, Apr. 2010.
    • (2010) Sens. Actuators B, Chem. , vol.146 , Issue.2 , pp. 502-506
    • Romain, A.C.1    Nicolas, J.2
  • 15
    • 85027951802 scopus 로고    scopus 로고
    • Domain adaptation extreme learning machines for drift compensation in E-nose systems
    • Jul.
    • L. Zhang and D. Zhang, "Domain adaptation extreme learning machines for drift compensation in E-nose systems," IEEE Trans. Instrum. Meas., vol. 64, no. 7, pp. 1790-1801, Jul. 2015.
    • (2015) IEEE Trans. Instrum. Meas. , vol.64 , Issue.7 , pp. 1790-1801
    • Zhang, L.1    Zhang, D.2
  • 16
    • 84924943274 scopus 로고    scopus 로고
    • Near-infrared calibration transfer via support vector machine and transfer learning
    • Y. Binfeng and J. Haibo, "Near-infrared calibration transfer via support vector machine and transfer learning," Anal. Methods, vol. 7, no. 6, pp. 2714-2725, 2015.
    • (2015) Anal. Methods , vol.7 , Issue.6 , pp. 2714-2725
    • Binfeng, Y.1    Haibo, J.2
  • 17
    • 84892391727 scopus 로고    scopus 로고
    • Drift compensation for electronic nose by semi-supervised domain adaption
    • Mar.
    • Q. Liu, X. Li, M. Ye, S. S. Ge, and X. Du, "Drift compensation for electronic nose by semi-supervised domain adaption," IEEE Sensors J., vol. 14, no. 3, pp. 657-665, Mar. 2014.
    • (2014) IEEE Sensors J. , vol.14 , Issue.3 , pp. 657-665
    • Liu, Q.1    Li, X.2    Ye, M.3    Ge, S.S.4    Du, X.5
  • 18
    • 84948157014 scopus 로고    scopus 로고
    • Calibration transfer and drift compensation of e-noses via coupled task learning
    • Mar.
    • K. Yan and D. Zhang, "Calibration transfer and drift compensation of e-noses via coupled task learning," Sens. Actuators B, Chem., vol. 225, pp. 288-297, Mar. 2016.
    • (2016) Sens. Actuators B, Chem. , vol.225 , pp. 288-297
    • Yan, K.1    Zhang, D.2
  • 19
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec.
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, no. 12, pp. 3371-3408, Dec. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , Issue.12 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 20
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Proc. Unsupervised Transf. Learn. Challenges Mach. Learn., vol. 7. 2012, p. 19.
    • (2012) Proc. Unsupervised Transf. Learn. Challenges Mach. Learn. , vol.7 , pp. 19
    • Bengio, Y.1
  • 21
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug.
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 22
    • 84894359867 scopus 로고    scopus 로고
    • A review of unsupervised feature learning and deep learning for time-series modeling
    • Jun.
    • M. Langkvist, L. Karlsson, and A. Loutfi, "A review of unsupervised feature learning and deep learning for time-series modeling," Pattern Recognit. Lett., vol. 42, pp. 11-24, Jun. 2014.
    • (2014) Pattern Recognit. Lett. , vol.42 , pp. 11-24
    • Langkvist, M.1    Karlsson, L.2    Loutfi, A.3
  • 23
    • 84904347051 scopus 로고    scopus 로고
    • Unsupervised feature learning for electronic nose data applied to bacteria identification in blood
    • M. Langkvist and A. Loutfi, "Unsupervised feature learning for electronic nose data applied to bacteria identification in blood," in Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011, pp. 1-7.
    • (2011) Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn. , pp. 1-7
    • Langkvist, M.1    Loutfi, A.2
  • 24
    • 84873853951 scopus 로고    scopus 로고
    • Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning
    • M. Langkvist, S. Coradeschi, A. Loutfi, and J. B. B. Rayappan, "Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning," Sensors, vol. 13, no. 2, pp. 1578-1592, 2013.
    • (2013) Sensors , vol.13 , Issue.2 , pp. 1578-1592
    • Langkvist, M.1    Coradeschi, S.2    Loutfi, A.3    Rayappan, J.B.B.4
  • 25
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for large-scale sentiment classification: A deep learning approach," in Proc. 28th Int. Conf. Mach. Learn. (ICML), 2011, pp. 97-110.
    • (2011) Proc. 28th Int. Conf. Mach. Learn. (ICML) , pp. 97-110
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 27
    • 84949753930 scopus 로고    scopus 로고
    • Supervised representation learning: Transfer learning with deep autoencoders
    • F. Zhuang, X. Cheng, P. Luo, S. J. Pan, and Q. He, "Supervised representation learning: Transfer learning with deep autoencoders," in Proc. 24th Int. Conf. Artif. Intell., 2015, pp. 4119-4125.
    • (2015) Proc. 24th Int. Conf. Artif. Intell. , pp. 4119-4125
    • Zhuang, F.1    Cheng, X.2    Luo, P.3    Pan, S.J.4    He, Q.5
  • 28
    • 84901439759 scopus 로고    scopus 로고
    • Autoencoder-based unsupervised domain adaptation for speech emotion recognition
    • Sep.
    • J. Deng, Z. Zhang, F. Eyben, and B. Schuller, "Autoencoder-based unsupervised domain adaptation for speech emotion recognition," IEEE Signal Process. Lett., vol. 21, no. 9, pp. 1068-1072, Sep. 2014.
    • (2014) IEEE Signal Process. Lett. , vol.21 , Issue.9 , pp. 1068-1072
    • Deng, J.1    Zhang, Z.2    Eyben, F.3    Schuller, B.4
  • 34
    • 84857819132 scopus 로고    scopus 로고
    • Theano: A CPU and GPU math expression compiler in Python
    • Austin, TX, USA
    • J. Bergstra, et al., "Theano: A CPU and GPU math expression compiler in Python," in Proc. Python Sci. Comput. Conf. (SciPy), vol. 4. Austin, TX, USA, 2010, pp. 1-7.
    • (2010) Proc. Python Sci. Comput. Conf. (SciPy) , vol.4 , pp. 1-7
    • Bergstra, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.