-
1
-
-
0343550880
-
A brief history of electronic noses
-
J. W. Gardner and P. N. Bartlett, "A brief history of electronic noses," Sens. Actuators B, Chem., vol. 18, nos. 1-3, pp. 210-211, 1994.
-
(1994)
Sens. Actuators B, Chem.
, vol.18
, Issue.1-3
, pp. 210-211
-
-
Gardner, J.W.1
Bartlett, P.N.2
-
2
-
-
40449096268
-
Electronic nose: Current status and future trends
-
F. Rock, N. Barsan, and U. Weimar, "Electronic nose: Current status and future trends," Chem. Rev., vol. 108, no. 2, pp. 705-725, 2008.
-
(2008)
Chem. Rev.
, vol.108
, Issue.2
, pp. 705-725
-
-
Rock, F.1
Barsan, N.2
Weimar, U.3
-
3
-
-
84861201240
-
Recognition of coffee using differential electronic nose
-
Jun.
-
K. Brudzewski, S. Osowski, and A. Dwulit, "Recognition of coffee using differential electronic nose," IEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1803-1810, Jun. 2012.
-
(2012)
IEEE Trans. Instrum. Meas.
, vol.61
, Issue.6
, pp. 1803-1810
-
-
Brudzewski, K.1
Osowski, S.2
Dwulit, A.3
-
4
-
-
81155123092
-
On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality
-
L. Zhang, et al., "On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality," Sens. Actuators B, Chem., vol. 160, no. 1, pp. 899-909, 2011.
-
(2011)
Sens. Actuators B, Chem.
, vol.160
, Issue.1
, pp. 899-909
-
-
Zhang, L.1
-
5
-
-
84908102393
-
Design of a breath analysis system for diabetes screening and blood glucose level prediction
-
Nov.
-
K. Yan, D. Zhang, D. Wu, H. Wei, and G. Lu, "Design of a breath analysis system for diabetes screening and blood glucose level prediction," IEEE Trans. Biomed. Eng., vol. 61, no. 11, pp. 2787-2795, Nov. 2014.
-
(2014)
IEEE Trans. Biomed. Eng.
, vol.61
, Issue.11
, pp. 2787-2795
-
-
Yan, K.1
Zhang, D.2
Wu, D.3
Wei, H.4
Lu, G.5
-
6
-
-
84867701713
-
Signal and data processing for machine olfaction and chemical sensing: A review
-
Nov.
-
S. Marco and A. Gutierrez-Galvez, "Signal and data processing for machine olfaction and chemical sensing: A review," IEEE Sensors J., vol. 12, no. 11, pp. 3189-3214, Nov. 2012.
-
(2012)
IEEE Sensors J.
, vol.12
, Issue.11
, pp. 3189-3214
-
-
Marco, S.1
Gutierrez-Galvez, A.2
-
8
-
-
0037191669
-
Transfer of multivariate calibration models: A review
-
R. N. Feudale, N. A. Woody, H. Tan, A. J. Myles, S. D. Brown, and J. Ferre, "Transfer of multivariate calibration models: A review," Chemometrics Intell. Lab. Syst., vol. 64, no. 2, pp. 181-192, 2002.
-
(2002)
Chemometrics Intell. Lab. Syst.
, vol.64
, Issue.2
, pp. 181-192
-
-
Feudale, R.N.1
Woody, N.A.2
Tan, H.3
Myles, A.J.4
Brown, S.D.5
Ferre, J.6
-
9
-
-
77956031473
-
A survey on transfer learning
-
Oct.
-
S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
10
-
-
84935860574
-
Improving the transfer ability of prediction models for electronic noses
-
Dec.
-
K. Yan and D. Zhang, "Improving the transfer ability of prediction models for electronic noses," Sens. Actuators B, Chem., vol. 220, pp. 115-124, Dec. 2015.
-
(2015)
Sens. Actuators B, Chem.
, vol.220
, pp. 115-124
-
-
Yan, K.1
Zhang, D.2
-
11
-
-
0033653314
-
Drift correction for gas sensors using multivariate methods
-
T. Artursson, T. Eklov, I. Lundstrom, P. Martensson, M. Sjostrom, and M. Holmberg, "Drift correction for gas sensors using multivariate methods," J. Chemometrics, vol. 14, nos. 5-6, pp. 711-723, 2000.
-
(2000)
J. Chemometrics
, vol.14
, Issue.5-6
, pp. 711-723
-
-
Artursson, T.1
Eklov, T.2
Lundstrom, I.3
Martensson, P.4
Sjostrom, M.5
Holmberg, M.6
-
12
-
-
71549126188
-
Drift compensation of gas sensor array data by orthogonal signal correction
-
M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, and S. Marco, "Drift compensation of gas sensor array data by orthogonal signal correction," Chemometrics Intell. Lab. Syst., vol. 100, no. 1, pp. 28-35, 2010.
-
(2010)
Chemometrics Intell. Lab. Syst.
, vol.100
, Issue.1
, pp. 28-35
-
-
Padilla, M.1
Perera, A.2
Montoliu, I.3
Chaudry, A.4
Persaud, K.5
Marco, S.6
-
13
-
-
77951105742
-
Long term stability of metal oxidebased gas sensors for e-nose environmental applications: An overview
-
Apr.
-
A. C. Romain and J. Nicolas, "Long term stability of metal oxidebased gas sensors for e-nose environmental applications: An overview," Sens. Actuators B, Chem., vol. 146, no. 2, pp. 502-506, Apr. 2010.
-
(2010)
Sens. Actuators B, Chem.
, vol.146
, Issue.2
, pp. 502-506
-
-
Romain, A.C.1
Nicolas, J.2
-
14
-
-
84861186931
-
Chemical gas sensor drift compensation using classifier ensembles
-
May
-
A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta, "Chemical gas sensor drift compensation using classifier ensembles," Sens. Actuators B, Chem., vols. 166-167, pp. 320-329, May 2012.
-
(2012)
Sens. Actuators B, Chem.
, vol.166-167
, pp. 320-329
-
-
Vergara, A.1
Vembu, S.2
Ayhan, T.3
Ryan, M.A.4
Homer, M.L.5
Huerta, R.6
-
15
-
-
85027951802
-
Domain adaptation extreme learning machines for drift compensation in E-nose systems
-
Jul.
-
L. Zhang and D. Zhang, "Domain adaptation extreme learning machines for drift compensation in E-nose systems," IEEE Trans. Instrum. Meas., vol. 64, no. 7, pp. 1790-1801, Jul. 2015.
-
(2015)
IEEE Trans. Instrum. Meas.
, vol.64
, Issue.7
, pp. 1790-1801
-
-
Zhang, L.1
Zhang, D.2
-
16
-
-
84924943274
-
Near-infrared calibration transfer via support vector machine and transfer learning
-
Y. Binfeng and J. Haibo, "Near-infrared calibration transfer via support vector machine and transfer learning," Anal. Methods, vol. 7, no. 6, pp. 2714-2725, 2015.
-
(2015)
Anal. Methods
, vol.7
, Issue.6
, pp. 2714-2725
-
-
Binfeng, Y.1
Haibo, J.2
-
17
-
-
84892391727
-
Drift compensation for electronic nose by semi-supervised domain adaption
-
Mar.
-
Q. Liu, X. Li, M. Ye, S. S. Ge, and X. Du, "Drift compensation for electronic nose by semi-supervised domain adaption," IEEE Sensors J., vol. 14, no. 3, pp. 657-665, Mar. 2014.
-
(2014)
IEEE Sensors J.
, vol.14
, Issue.3
, pp. 657-665
-
-
Liu, Q.1
Li, X.2
Ye, M.3
Ge, S.S.4
Du, X.5
-
18
-
-
84948157014
-
Calibration transfer and drift compensation of e-noses via coupled task learning
-
Mar.
-
K. Yan and D. Zhang, "Calibration transfer and drift compensation of e-noses via coupled task learning," Sens. Actuators B, Chem., vol. 225, pp. 288-297, Mar. 2016.
-
(2016)
Sens. Actuators B, Chem.
, vol.225
, pp. 288-297
-
-
Yan, K.1
Zhang, D.2
-
19
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Dec.
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, no. 12, pp. 3371-3408, Dec. 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, Issue.12
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
20
-
-
84904548965
-
Deep learning of representations for unsupervised and transfer learning
-
Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Proc. Unsupervised Transf. Learn. Challenges Mach. Learn., vol. 7. 2012, p. 19.
-
(2012)
Proc. Unsupervised Transf. Learn. Challenges Mach. Learn.
, vol.7
, pp. 19
-
-
Bengio, Y.1
-
21
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug.
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
22
-
-
84894359867
-
A review of unsupervised feature learning and deep learning for time-series modeling
-
Jun.
-
M. Langkvist, L. Karlsson, and A. Loutfi, "A review of unsupervised feature learning and deep learning for time-series modeling," Pattern Recognit. Lett., vol. 42, pp. 11-24, Jun. 2014.
-
(2014)
Pattern Recognit. Lett.
, vol.42
, pp. 11-24
-
-
Langkvist, M.1
Karlsson, L.2
Loutfi, A.3
-
23
-
-
84904347051
-
Unsupervised feature learning for electronic nose data applied to bacteria identification in blood
-
M. Langkvist and A. Loutfi, "Unsupervised feature learning for electronic nose data applied to bacteria identification in blood," in Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011, pp. 1-7.
-
(2011)
Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn.
, pp. 1-7
-
-
Langkvist, M.1
Loutfi, A.2
-
24
-
-
84873853951
-
Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning
-
M. Langkvist, S. Coradeschi, A. Loutfi, and J. B. B. Rayappan, "Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning," Sensors, vol. 13, no. 2, pp. 1578-1592, 2013.
-
(2013)
Sensors
, vol.13
, Issue.2
, pp. 1578-1592
-
-
Langkvist, M.1
Coradeschi, S.2
Loutfi, A.3
Rayappan, J.B.B.4
-
25
-
-
80053443013
-
Domain adaptation for large-scale sentiment classification: A deep learning approach
-
X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for large-scale sentiment classification: A deep learning approach," in Proc. 28th Int. Conf. Mach. Learn. (ICML), 2011, pp. 97-110.
-
(2011)
Proc. 28th Int. Conf. Mach. Learn. (ICML)
, pp. 97-110
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
26
-
-
84908206159
-
Hybrid heterogeneous transfer learning through deep learning
-
J. T. Zhou, S. J. Pan, I. W. Tsang, and Y. Yan, "Hybrid heterogeneous transfer learning through deep learning," in Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 2213-2220.
-
(2014)
Proc. 28th AAAI Conf. Artif. Intell.
, pp. 2213-2220
-
-
Zhou, J.T.1
Pan, S.J.2
Tsang, I.W.3
Yan, Y.4
-
27
-
-
84949753930
-
Supervised representation learning: Transfer learning with deep autoencoders
-
F. Zhuang, X. Cheng, P. Luo, S. J. Pan, and Q. He, "Supervised representation learning: Transfer learning with deep autoencoders," in Proc. 24th Int. Conf. Artif. Intell., 2015, pp. 4119-4125.
-
(2015)
Proc. 24th Int. Conf. Artif. Intell.
, pp. 4119-4125
-
-
Zhuang, F.1
Cheng, X.2
Luo, P.3
Pan, S.J.4
He, Q.5
-
28
-
-
84901439759
-
Autoencoder-based unsupervised domain adaptation for speech emotion recognition
-
Sep.
-
J. Deng, Z. Zhang, F. Eyben, and B. Schuller, "Autoencoder-based unsupervised domain adaptation for speech emotion recognition," IEEE Signal Process. Lett., vol. 21, no. 9, pp. 1068-1072, Sep. 2014.
-
(2014)
IEEE Signal Process. Lett.
, vol.21
, Issue.9
, pp. 1068-1072
-
-
Deng, J.1
Zhang, Z.2
Eyben, F.3
Schuller, B.4
-
29
-
-
84958526478
-
Improving deep neural network performance by reusing features trained with transductive transference
-
Switzerland: Springer
-
C. Kandaswamy, L. M. Silva, L. A. Alexandre, J. M. Santos, and J. M. de Sa, "Improving deep neural network performance by reusing features trained with transductive transference," in Artificial Neural Networks and Machine Learning. Switzerland: Springer, 2014, pp. 265-272.
-
(2014)
Artificial Neural Networks and Machine Learning
, pp. 265-272
-
-
Kandaswamy, C.1
Silva, L.M.2
Alexandre, L.A.3
Santos, J.M.4
De Sa, J.M.5
-
30
-
-
84902256759
-
DLID: Deep learning for domain adaptation by interpolating between domains
-
S. Chopra, S. Balakrishnan, and R. Gopalan, "DLID: Deep learning for domain adaptation by interpolating between domains," in Proc. ICML Workshop Challenges Represent. Learn., vol. 2. 2013, pp. 1-8.
-
(2013)
Proc. ICML Workshop Challenges Represent. Learn.
, vol.2
, pp. 1-8
-
-
Chopra, S.1
Balakrishnan, S.2
Gopalan, R.3
-
31
-
-
84901228061
-
A survey on concept drift adaptation
-
Apr.
-
J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, "A survey on concept drift adaptation," ACM Comput. Surv., vol. 46, no. 4, pp. 44:1-44:37, Apr. 2014.
-
(2014)
ACM Comput. Surv.
, vol.46
, Issue.4
, pp. 441-4437
-
-
Gama, J.1
Zliobaite, I.2
Bifet, A.3
Pechenizkiy, M.4
Bouchachia, A.5
-
32
-
-
84911383347
-
Stacked progressive autoencoders (SPAE) for face recognition across poses
-
Jun.
-
M. Kan, S. Shan, H. Chang, and X. Chen, "Stacked progressive autoencoders (SPAE) for face recognition across poses," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1883-1890.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 1883-1890
-
-
Kan, M.1
Shan, S.2
Chang, H.3
Chen, X.4
-
33
-
-
84982995955
-
-
1st ed. New York, NY, USA: McGraw-Hill, ch. 11
-
J. Chou, Hazardous Gas Monitors: A Practical Guide to Selection, Operation, and Applications (Gas Sensor Calibration), 1st ed. New York, NY, USA: McGraw-Hill, 1999, ch. 11, pp. 161-173.
-
(1999)
Hazardous Gas Monitors: A Practical Guide to Selection, Operation, and Applications (Gas Sensor Calibration)
, pp. 161-173
-
-
Chou, J.1
-
34
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler in Python
-
Austin, TX, USA
-
J. Bergstra, et al., "Theano: A CPU and GPU math expression compiler in Python," in Proc. Python Sci. Comput. Conf. (SciPy), vol. 4. Austin, TX, USA, 2010, pp. 1-7.
-
(2010)
Proc. Python Sci. Comput. Conf. (SciPy)
, vol.4
, pp. 1-7
-
-
Bergstra, J.1
-
35
-
-
80051991360
-
Active learning based on locally linear reconstruction
-
Oct.
-
L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang, "Active learning based on locally linear reconstruction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 10, pp. 2026-2038, Oct. 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.10
, pp. 2026-2038
-
-
Zhang, L.1
Chen, C.2
Bu, J.3
Cai, D.4
He, X.5
Huang, T.S.6
|