메뉴 건너뛰기




Volumn 8681 LNCS, Issue , 2014, Pages 265-272

Improving deep neural network performance by reusing features trained with transductive transference

Author keywords

Deep Neural Network; Feature Transference

Indexed keywords

CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 84958526478     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-11179-7_34     Document Type: Conference Paper
Times cited : (40)

References (9)
  • 3
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Cited by 0083
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010); Cited by 0083
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 4
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Cited by 2008
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278-2324 (1998); Cited by 2008
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 7
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A dasvm classification technique and a circular validation strategy
    • Bruzzone, L., Marconcini, M.: Domain adaptation problems: A dasvm classification technique and a circular validation strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5), 770-787 (2010)
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , Issue.5 , pp. 770-787
    • Bruzzone, L.1    Marconcini, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.