-
1
-
-
84911417279
-
Multiscale combinatorial grouping
-
P. A. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marqués, and J. Malik. Multiscale combinatorial grouping. In CVPR, pages 328-335, 2014.
-
(2014)
CVPR
, pp. 328-335
-
-
Arbeláez, P.A.1
Pont-Tuset, J.2
Barron, J.T.3
Marqués, F.4
Malik, J.5
-
2
-
-
84911421600
-
Detect what you can: Detecting and represent-ing objects using holistic models and body parts
-
X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. L. Yuille. Detect what you can: Detecting and represent-ing objects using holistic models and body parts. In ICCV, pages 1979-1986, 2014.
-
(2014)
ICCV
, pp. 1979-1986
-
-
Chen, X.1
Mottaghi, R.2
Liu, X.3
Fidler, S.4
Urtasun, R.5
Yuille, A.L.6
-
3
-
-
79953187637
-
Discriminative models for multi-class object layout
-
C. Desai, D. Ramanan, and C. C. Fowlkes. Discriminative models for multi-class object layout. IJCV, 95 (1): 1-12, 2011.
-
(2011)
IJCV
, vol.95
, Issue.1
, pp. 1-12
-
-
Desai, C.1
Ramanan, D.2
Fowlkes, C.C.3
-
4
-
-
84887348680
-
Learning collections of part models for object recognition
-
I. Endres, K. J. Shih, J. Jiaa, and D. Hoiem. Learning collections of part models for object recognition. In CVPR, pages 939-946, 2013.
-
(2013)
CVPR
, pp. 939-946
-
-
Endres, I.1
Shih, K.J.2
Jiaa, J.3
Hoiem, D.4
-
5
-
-
84911443425
-
Scalable object detection using deep neural networks
-
D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In CVPR, pages 2155-2162, 2014.
-
(2014)
CVPR
, pp. 2155-2162
-
-
Erhan, D.1
Szegedy, C.2
Toshev, A.3
Anguelov, D.4
-
6
-
-
84921069139
-
The pascal visual object classes challenge: A retrospective
-
M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. IJCV, 111 (1): 98-136, 2015.
-
(2015)
IJCV
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.M.A.2
Gool, L.V.3
Williams, C.K.I.4
Winn, J.M.5
Zisserman, A.6
-
7
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9: 1871-1874, 2008.
-
(2008)
JMLR
, vol.9
, pp. 1871-1874
-
-
Fan, R.1
Chang, K.2
Hsieh, C.3
Wang, X.4
Lin, C.5
-
8
-
-
51949101231
-
A discriminatively trained, multiscale, deformable part model
-
P. F. Felzenszwalb, D. A. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
-
(2008)
CVPR
-
-
Felzenszwalb, P.F.1
McAllester, D.A.2
Ramanan, D.3
-
9
-
-
84887363550
-
Bottomup segmentation for top-down detection
-
S. Fidler, R. Mottaghi, A. L. Yuille, and R. Urtasun. Bottomup segmentation for top-down detection. In CVPR, pages 3294-3301, 2013.
-
(2013)
CVPR
, pp. 3294-3301
-
-
Fidler, S.1
Mottaghi, R.2
Yuille, A.L.3
Urtasun, R.4
-
10
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
-
(2014)
CVPR
, pp. 580-587
-
-
Girshick, R.B.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
11
-
-
84911392501
-
Detecting objects using deformation dictionaries
-
B. Hariharan, C. L. Zitnick, and P. Dollár. Detecting objects using deformation dictionaries. In CVPR, pages 1995-2002, 2014.
-
(2014)
CVPR
, pp. 1995-2002
-
-
Hariharan, B.1
Zitnick, C.L.2
Dollár, P.3
-
12
-
-
84931584164
-
-
CoRR, abs/1406. 4729
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406. 4729, 2014.
-
(2014)
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84867841321
-
Diagnosing error in object detectors
-
D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. In ECCV, pages 340-353, 2012.
-
(2012)
ECCV
, pp. 340-353
-
-
Hoiem, D.1
Chodpathumwan, Y.2
Dai, Q.3
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
-
(2012)
NIPS
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, X. Chen, X. Liu, N. Cho, S. Lee, S. Fidler, R. Urtasun, and A. L. Yuille. The role of context for object detection and semantic segmentation in the wild. In CVPR, pages 891-898, 2014.
-
(2014)
CVPR
, pp. 891-898
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.4
Lee, S.5
Fidler, S.6
Urtasun, R.7
Yuille, A.L.8
-
17
-
-
84952047704
-
-
CoRR, abs/1409. 3505
-
W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian, H. Li, S. Yang, Z. Wang, Y. Xiong, C. Qian, Z. Zhu, R. Wang, C. C. Loy, X. Wang, and X. Tang. Deepid-net: multi-stage and deformable deep convolutional neural networks for object detection. CoRR, abs/1409. 3505, 2014.
-
(2014)
Deepid-net: Multi-stage and Deformable Deep Convolutional Neural Networks for Object Detection
-
-
Ouyang, W.1
Luo, P.2
Zeng, X.3
Qiu, S.4
Tian, Y.5
Li, H.6
Yang, S.7
Wang, Z.8
Xiong, Y.9
Qian, C.10
Zhu, Z.11
Wang, R.12
Loy, C.C.13
Wang, X.14
Tang, X.15
-
18
-
-
84898794751
-
Human-debugging of machines
-
D. Parikh and C. Zitnick. Human-debugging of machines. NIPS WCSSWC, 2: 7, 2011.
-
(2011)
NIPS WCSSWC
, vol.2
, pp. 7
-
-
Parikh, D.1
Zitnick, C.2
-
19
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS, pages 61-74, 1999.
-
(1999)
ADVANCES in LARGE MARGin CLASSIFIERS
, pp. 61-74
-
-
Platt, J.C.1
-
21
-
-
84964983441
-
-
CoRR, abs/1409. 4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CoRR, abs/1409. 4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
22
-
-
84962336509
-
-
CoRR, abs/1412. 1441
-
C. Szegedy, S. Reed, D. Erhan, and D. Anguelov. Scalable, high-quality object detection. CoRR, abs/1412. 1441, 2014.
-
(2014)
Scalable, High-quality Object Detection
-
-
Szegedy, C.1
Reed, S.2
Erhan, D.3
Anguelov, D.4
-
23
-
-
84856655938
-
Segmentation as selective search for object recognition
-
K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and A. W. M. Smeulders. Segmentation as selective search for object recognition. In ICCV, pages 1879-1886, 2011.
-
(2011)
ICCV
, pp. 1879-1886
-
-
Van De Sande, A.K.E.1
Uijlings, J.R.R.2
Gevers, T.3
Smeulders, A.W.M.4
-
24
-
-
84959233955
-
SegDeepM: Exploiting segmentation and context in deep neural networks for object detection
-
Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler. segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhu, Y.1
Urtasun, R.2
Salakhutdinov, R.3
Fidler, S.4
-
25
-
-
84906489617
-
Edge boxes: Locating object proposals from edges
-
C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, pages 391-405, 2014.
-
(2014)
ECCV
, pp. 391-405
-
-
Zitnick, C.L.1
Dollár, P.2
|