메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2481-2488

Domain adaptation on the statistical manifold

Author keywords

Domain Adaptation; Object Recognition; Statistical Manifold

Indexed keywords

METADATA; OBJECT RECOGNITION;

EID: 84911361339     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.318     Document Type: Conference Paper
Times cited : (118)

References (35)
  • 2
  • 4
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In NIPS, 2010.
    • (2010) NIPS
    • Bergamo, A.1    Torresani, L.2
  • 5
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A dasvm classification technique and a circular validation strategy
    • L. Bruzzone and M. Marconcini. Domain adaptation problems: A dasvm classification technique and a circular validation strategy. TPAMI, 2010.
    • (2010) TPAMI
    • Bruzzone, L.1    Marconcini, M.2
  • 7
    • 70349878941 scopus 로고    scopus 로고
    • Fine: Fisher information nonparametric embedding
    • K. Carter, R. Raich, W. Finn, and A. Hero. Fine: Fisher information nonparametric embedding. PAMI, 2009.
    • (2009) PAMI
    • Carter, K.1    Raich, R.2    Finn, W.3    Hero, A.4
  • 9
    • 85162030733 scopus 로고    scopus 로고
    • Co-regularization based semi-supervised domain adaptation
    • H. Daumé III, A. Kumar, and A. Saha. Co-regularization based semi-supervised domain adaptation. In NIPS, 2010.
    • (2010) NIPS
    • Daumé, H.1    Kumar, A.2    Saha, A.3
  • 10
    • 33749028480 scopus 로고    scopus 로고
    • Domain adaptation for statistical classifiers
    • H. Daumé III and D. Marcu. Domain adaptation for statistical classifiers. JAIR, 2006.
    • (2006) JAIR
    • Daumé, H.1    Marcu, D.2
  • 11
    • 79953064532 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources via auxiliary classifiers
    • L. Duan, I. Tsang, D. Xu, and T. Chua. Domain adaptation from multiple sources via auxiliary classifiers. In ICML, 2009.
    • (2009) ICML
    • Duan, L.1    Tsang, I.2    Xu, D.3    Chua, T.4
  • 12
    • 70450185098 scopus 로고    scopus 로고
    • Domain transfer svm for video concept detection
    • L. Duan, I. Tsang, D. Xu, and S. Maybank. Domain transfer svm for video concept detection. In CVPR, 2009.
    • (2009) CVPR
    • Duan, L.1    Tsang, I.2    Xu, D.3    Maybank, S.4
  • 13
    • 84897476317 scopus 로고    scopus 로고
    • Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
    • B. Gong, K. Grauman, and F. Sha. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In ICML, 2013.
    • (2013) ICML
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 14
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012.
    • (2012) CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 15
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, 2011.
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 19
    • 84885059025 scopus 로고    scopus 로고
    • Kernel analysis on grassmann manifolds for action recognition
    • M. Harandi, C. Sanderson, S. Shirazi, and B. Lovell. Kernel analysis on grassmann manifolds for action recognition. PRL, 2013.
    • (2013) PRL
    • Harandi, M.1    Sanderson, C.2    Shirazi, S.3    Lovell, B.4
  • 21
    • 84887334107 scopus 로고    scopus 로고
    • Discovering latent domains for multisource domain adaptation
    • J. Hoffman, B. Kulis, T. Darrell, and K. Saenko. Discovering latent domains for multisource domain adaptation. In ECCV, 2012.
    • (2012) ECCV
    • Hoffman, J.1    Kulis, B.2    Darrell, T.3    Saenko, K.4
  • 23
    • 84887400913 scopus 로고    scopus 로고
    • Kernel methods on the riemannian manifold of symmetric positive definite matrices
    • S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Ha-randi. Kernel methods on the riemannian manifold of symmetric positive definite matrices. In CVPR, 2013.
    • (2013) CVPR
    • Jayasumana, S.1    Hartley, R.2    Salzmann, M.3    Li, H.4    Ha-Randi, M.5
  • 24
    • 84972503977 scopus 로고
    • The geometry of asymptotic inference
    • R. Kass. The geometry of asymptotic inference. Statistical Science, 1989.
    • (1989) Statistical Science
    • Kass, R.1
  • 25
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR, 2011.
    • (2011) CVPR
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 26
    • 84897517066 scopus 로고    scopus 로고
    • Domain generalization via invariant feature representation
    • K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invariant feature representation. In ICML, 2013.
    • (2013) ICML
    • Muandet, K.1    Balduzzi, D.2    Schölkopf, B.3
  • 27
    • 84887392643 scopus 로고    scopus 로고
    • Subspace interpolation via dictionary learning for unsupervised domain adaptation
    • J. Ni, Q. Qiu, and R. Chellappa. Subspace interpolation via dictionary learning for unsupervised domain adaptation. In CVPR, 2013.
    • (2013) CVPR
    • Ni, J.1    Qiu, Q.2    Chellappa, R.3
  • 28
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • S. Pan, I. Tsang, J. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. TNN, 2011.
    • (2011) TNN
    • Pan, S.1    Tsang, I.2    Kwok, J.3    Yang, Q.4
  • 30
    • 80052906503 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010.
    • (2010) ECCV
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 31
    • 35148888652 scopus 로고    scopus 로고
    • Riemannian analysis of probability density functions with applications in vision
    • A. Srivastava, I. Jermyn, and S. Joshi. Riemannian analysis of probability density functions with applications in vision. In CVPR, 2007.
    • (2007) CVPR
    • Srivastava, A.1    Jermyn, I.2    Joshi, S.3
  • 33
    • 84911451357 scopus 로고    scopus 로고
    • Pedestrian detection via classification on riemannian manifolds
    • O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification on riemannian manifolds. PAMI.
    • PAMI
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 34
    • 84898809022 scopus 로고    scopus 로고
    • Bridged refinement for transfer learning
    • D. Xing, W. Dai, G. Xue, and Y. Yu. Bridged refinement for transfer learning. In ECML, 2007.
    • (2007) ECML
    • Xing, D.1    Dai, W.2    Xue, G.3    Yu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.