메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1227-1234

A joint learning framework for attribute models and object descriptions

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASETS; CLASS INFORMATION; CLASSIFIER LEARNING; LEARNING FRAMEWORKS; OBJECT DESCRIPTION;

EID: 84856659292     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126373     Document Type: Conference Paper
Times cited : (82)

References (12)
  • 1
    • 78149327581 scopus 로고    scopus 로고
    • Automatic attribute discovery and characterization from noisy web data
    • Berlin, Heidelberg. Springer-Verlag.,2
    • T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In ECCV, ECCV'10, pages 663-676, Berlin, Heidelberg, 2010. Springer-Verlag. 2
    • (2010) ECCV, ECCV'10 , pp. 663-676
    • Berg, T.L.1    Berg, A.C.2    Shih, J.3
  • 3
    • 36849014901 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • 5
    • A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid kernel. In CIVR, pages 401-408, 2007. 5
    • (2007) CIVR , pp. 401-408
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 4
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • 2
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263-286, 1995. 2
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 5
    • 77956006784 scopus 로고    scopus 로고
    • Attribute-centric recognition for cross-category generalization
    • 2
    • A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for cross-category generalization. CVPR, 0:2352- 2359, 2010. 2
    • (2010) CVPR , pp. 2352-2359
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3
  • 6
    • 70450207704 scopus 로고    scopus 로고
    • Describing Objects by their Attributes
    • 1,2, 3, 5,8
    • A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing Objects by their Attributes. In CVPR, 2009. 1, 2, 3, 5, 8
    • (2009) CVPR
    • Farhadi, A.1    Endres, I.2    Hoiem, D.3    Forsyth, D.4
  • 7
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • Dec. 2
    • V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, Dec. 2007. 2
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 8
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • Oct 1,2
    • N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and Simile Classifiers for Face Verification. In ICCV, Oct 2009. 1, 2
    • (2009) ICCV
    • Kumar, N.1    Berg, A.C.2    Belhumeur, P.N.3    Nayar, S.K.4
  • 9
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute tranfser
    • 1,2,3,5,7
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to Detect Unseen Object Classes by Between-Class Attribute Tranfser. In CVPR, 2009. 1, 2, 3, 5, 7
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 10
    • 33645963453 scopus 로고    scopus 로고
    • Discriminant ecoc: A heuristic method for application dependent design of error correcting output codes
    • 2
    • O. Pujol, P. Radeva, and J. Vitria. Discriminant ecoc: A heuristic method for application dependent design of error correcting output codes. PAMI, 28:1007-1012, 2006. 2
    • (2006) PAMI , vol.28 , pp. 1007-1012
    • Pujol, O.1    Radeva, P.2    Vitria, J.3
  • 12
    • 77951296653 scopus 로고    scopus 로고
    • Unsupervised object discovery: A comparison
    • June 2
    • T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine. Unsupervised object discovery: A comparison. IJCV, 88:284-302, June 2010. 2
    • (2010) IJCV , vol.88 , pp. 284-302
    • Tuytelaars, T.1    Lampert, C.H.2    Blaschko, M.B.3    Buntine, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.