메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1224-1232

Relaxed multiple-instance SVM with application to object discovery

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; IMAGE CLASSIFICATION; OPTIMIZATION; STOCHASTIC SYSTEMS;

EID: 84973894683     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.145     Document Type: Conference Paper
Times cited : (100)

References (38)
  • 1
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • 2, 4
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002. 2, 4
    • (2002) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 5
    • 84911458493 scopus 로고    scopus 로고
    • Enriching visual knowledge bases via object discovery and segmentation
    • 1, 2
    • X. Chen, A. Shrivastava, and A. Gupta. Enriching visual knowledge bases via object discovery and segmentation. In CVPR, pages 2035-2042, 2014. 1, 2
    • (2014) CVPR , pp. 2035-2042
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 7
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • 2
    • Y. Chen and J. Z. Wang. Image categorization by learning and reasoning with regions. Journal of Machine Learning Research, 5:913-939, 2004. 2
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.Z.2
  • 9
    • 84911376072 scopus 로고    scopus 로고
    • Multi-fold MIL training for weakly supervised object localization
    • 1, 2, 6, 8
    • R. G. Cinbis, J. J. Verbeek, and C. Schmid. Multi-fold MIL training for weakly supervised object localization. In CVPR, 2014. 1, 2, 6, 8
    • (2014) CVPR
    • Cinbis, R.G.1    Verbeek, J.J.2    Schmid, C.3
  • 10
    • 84867062047 scopus 로고    scopus 로고
    • Weakly supervised localization and learning with generic knowledge
    • 6
    • T. Deselaers, B. Alexe, and V. Ferrari. Weakly supervised localization and learning with generic knowledge. International Journal of Computer Vision, 100(3):275-293, 2012. 6
    • (2012) International Journal of Computer Vision , vol.100 , Issue.3 , pp. 275-293
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 11
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • 1, 2, 4, 5
    • T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell., 89(1-2):31-71, 1997. 1, 2, 4, 5
    • (1997) Artif. Intell. , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 2
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 2
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
    • 84864323247 scopus 로고    scopus 로고
    • Miforests: Multiple-instance learning with randomized trees
    • 5, 6
    • C. Leistner, A. Saffari, and H. Bischof. Miforests: Multiple-instance learning with randomized trees. In ECCV, 2010. 5, 6
    • (2010) ECCV
    • Leistner, C.1    Saffari, A.2    Bischof, H.3
  • 20
    • 84973857686 scopus 로고    scopus 로고
    • Key instance detection in multiinstance learning
    • 2
    • G. Liu, J. Wu, and Z.-H. Zhou. Key instance detection in multiinstance learning. In ACML, 2012. 2
    • (2012) ACML
    • Liu, G.1    Wu, J.2    Zhou, Z.-H.3
  • 21
    • 84898935332 scopus 로고    scopus 로고
    • A framework for multiple-instance learning
    • 2
    • O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. NIPS, 1998. 2
    • (1998) NIPS
    • Maron, O.1    Lozano-Pérez, T.2
  • 22
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • 6
    • M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011. 6
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 23
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • 7. Springer
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV. Springer, 2010. 7
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 24
    • 48849117633 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • 4
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In ICML, 2007. 4
    • (2007) ICML
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 25
    • 84898784069 scopus 로고    scopus 로고
    • Bayesian joint topic modelling for weakly supervised object localisation
    • 8
    • Z. Shi, T. M. Hospedales, and T. Xiang. Bayesian joint topic modelling for weakly supervised object localisation. In ICCV, 2013. 8
    • (2013) ICCV
    • Shi, Z.1    Hospedales, T.M.2    Xiang, T.3
  • 26
    • 84888335371 scopus 로고    scopus 로고
    • In defence of negative mining for annotating weakly labelled data
    • 8
    • P. Siva, C. Russell, and T. Xiang. In defence of negative mining for annotating weakly labelled data. In ECCV, 2012. 8
    • (2012) ECCV
    • Siva, P.1    Russell, C.2    Xiang, T.3
  • 27
    • 84887368488 scopus 로고    scopus 로고
    • Looking beyond the image: Unsupervised learning for object saliency and detection
    • 8
    • P. Siva, C. Russell, T. Xiang, and L. de Agapito. Looking beyond the image: Unsupervised learning for object saliency and detection. In CVPR, 2013. 8
    • (2013) CVPR
    • Siva, P.1    Russell, C.2    Xiang, T.3    De Agapito, L.4
  • 28
    • 84856651319 scopus 로고    scopus 로고
    • Weakly supervised object detector learning with model drift detection
    • 8
    • P. Siva and T. Xiang. Weakly supervised object detector learning with model drift detection. In ICCV, 2011. 8
    • (2011) ICCV
    • Siva, P.1    Xiang, T.2
  • 30
    • 56449086489 scopus 로고    scopus 로고
    • Adaptive p-posterior mixturemodel kernels for multiple instance learning
    • 5
    • H.-Y. Wang, Q. Yang, and H. Zha. Adaptive p-posterior mixturemodel kernels for multiple instance learning. In ICML, 2008. 5
    • (2008) ICML
    • Wang, H.-Y.1    Yang, Q.2    Zha, H.3
  • 31
    • 84893502251 scopus 로고    scopus 로고
    • Robust subspace discovery via relaxed rank minimization
    • 2, 6
    • X. Wang, Z. Zhang, Y. Ma, X. Bai, W. Liu, and Z. Tu. Robust subspace discovery via relaxed rank minimization. Neural Computation, 26(3):611-635, 2014. 2, 6
    • (2014) Neural Computation , vol.26 , Issue.3 , pp. 611-635
    • Wang, X.1    Zhang, Z.2    Ma, Y.3    Bai, X.4    Liu, W.5    Tu, Z.6
  • 32
    • 84936972937 scopus 로고    scopus 로고
    • Scalable multi-instance learning
    • 2, 5
    • X. Wei, J. Wu, and Z. Zhou. Scalable multi-instance learning. In ICDM, 2014. 2, 5
    • (2014) ICDM
    • Wei, X.1    Wu, J.2    Zhou, Z.3
  • 33
    • 84955184649 scopus 로고    scopus 로고
    • Deep multiple instance learning for image classification and auto-annotation
    • 2
    • J. Wu, Y. Yu, C. Huang, and K. Yu. Deep multiple instance learning for image classification and auto-annotation. In CVPR, 2015. 2
    • (2015) CVPR
    • Wu, J.1    Yu, Y.2    Huang, C.3    Yu, K.4
  • 34
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • 2
    • C. Zhang, J. C. Platt, and P. A. Viola. Multiple instance boosting for object detection. In NIPS, 2005. 2
    • (2005) NIPS
    • Zhang, C.1    Platt, J.C.2    Viola, P.A.3
  • 35
    • 0012349465 scopus 로고    scopus 로고
    • EM-DD: An improved multipleinstance learning technique
    • 2, 5
    • Q. Zhang and S. A. Goldman. EM-DD: An improved multipleinstance learning technique. In NIPS, 2001. 2, 5
    • (2001) NIPS
    • Zhang, Q.1    Goldman, S.A.2
  • 36
    • 71149085943 scopus 로고    scopus 로고
    • Multi-instance learning by treating instances as non-IID samples
    • 2, 5
    • Z. Zhou, Y. Sun, and Y. Li. Multi-instance learning by treating instances as non-i. i. d. samples. In ICML, 2009. 2, 5
    • (2009) ICML
    • Zhou, Z.1    Sun, Y.2    Li, Y.3
  • 38
    • 84952018709 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • 1, 2, 6
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014. 1, 2, 6
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.