메뉴 건너뛰기




Volumn 26, Issue 3, 2014, Pages 611-635

Robust subspace discovery via relaxed rank minimization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84893502251     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00555     Document Type: Article
Times cited : (12)

References (51)
  • 2
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • In S. Becker, S. Thr ün, & K. Obermayer (Eds.). Cambridge, MA: MIT Press
    • Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines for multiple-instance learning. In S. Becker, S. Thr ün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 561-568). Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.15 , pp. 561-568
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 3
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1-122.
    • (2011) Foundations and Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 4
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis
    • Candes, E., Li, X., Ma, Y., &Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3), 1-37.
    • (2011) Journal of the ACM , vol.58 , Issue.3 , pp. 1-37
    • Candes, E.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 7
    • 34948855941 scopus 로고    scopus 로고
    • An exemplar model for learning object classes
    • In IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE
    • Chum, O., & Zisserman, A., 2007. An exemplar model for learning object classes. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). Piscataway, NJ: IEEE.
    • (2007) , pp. 1-8
    • Chum, O.1    Zisserman, A.2
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. Series B, 39(1), 1-38.
    • (1977) J. Royal Statist. Soc. Series B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 9
    • 84867062047 scopus 로고    scopus 로고
    • Weakly supervised localization and learning with generic knowledge
    • Deselaers, T., Alexe, B., & Ferrari, V. (2012). Weakly supervised localization and learning with generic knowledge. International Journal of Computer Vision, 100(3), 275-293.
    • (2012) International Journal of Computer Vision , vol.100 , Issue.3 , pp. 275-293
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 10
    • 77956555219 scopus 로고    scopus 로고
    • A conditional random field for multiple-instance learning
    • In Proceedings of the 26th International Conference on Machine Learning. Madison,WI: Omnipress
    • Deselaers, T., & Ferrari, V. (2010). A conditional random field for multiple-instance learning. In Proceedings of the 26th International Conference on Machine Learning (pp. 287-294). Madison,WI: Omnipress.
    • (2010) , pp. 287-294
    • Deselaers, T.1    Ferrari, V.2
  • 11
    • 0030649484 scopus 로고    scopus 로고
    • Solving themultiple-instance problemwith axis-parallel rectangles
    • Dietterich, T. G.,&Lathrop, R. H. (1997). Solving themultiple-instance problemwith axis-parallel rectangles. Artificial Intelligence, 89, 31-71.
    • (1997) Artificial Intelligence , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2
  • 12
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Dietterich, T., Lathrop, R., & Lozano-Pérez, T. (1997). Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2), 31-71.
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.1    Lathrop, R.2    Lozano-Pérez, T.3
  • 13
    • 70450184118 scopus 로고    scopus 로고
    • Sparse subspace clustering
    • In IEEE Conference on Computer Vision and pattern recognition. Piscataway, NJ: IEEE
    • Elhamifar, E., & Vidal, R. (2009). Sparse subspace clustering. In IEEE Conference on Computer Vision and pattern recognition (pp. 2790-2797). Piscataway, NJ: IEEE.
    • (2009) , pp. 2790-2797
    • Elhamifar, E.1    Vidal, R.2
  • 14
    • 84921069139 scopus 로고    scopus 로고
    • The PASCAL Visual Object Classes Challenge 2007 (VOC2007) results
    • Retrieved from
    • Everingham,M., Van Gool, L.,Williams, C.K.I.,Winn, J., & Zisserman, A. (2007). The PASCAL Visual Object Classes Challenge 2007 (VOC2007) results. Retrieved from http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index .html
    • (2007)
    • Everingham, M.1    Van Gool, L.2    Williams, C.K.I.3    Winn, J.4    Zisserman, A.5
  • 15
    • 51849167307 scopus 로고    scopus 로고
    • The PASCAL Visual Object Classes Challenge (VOC) results
    • Retrieved from
    • Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., & Zisserman, A. (2011). The PASCAL Visual Object Classes Challenge (VOC) results. Retrieved from http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index .html
    • (2011)
    • Everingham, M.1    Van Gool, L.2    Williams, C.K.I.3    Winn, J.4    Zisserman, A.5
  • 16
    • 84921069139 scopus 로고    scopus 로고
    • The PASCAL Visual Object Classes Challenge 2006 (VOC2006) results
    • Retrieved from
    • Everingham, M., Zisserman, A., Williams, C.K.I., & Van Gool, L. (2006). The PASCAL Visual Object Classes Challenge 2006 (VOC2006) results. Retrieved from http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf
    • (2006)
    • Everingham, M.1    Zisserman, A.2    Williams, C.K.I.3    Van Gool, L.4
  • 17
    • 80052874540 scopus 로고    scopus 로고
    • A closed form solution to robust subspace estimation and clustering
    • In IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE
    • Favaro, P., Vidal, R., & Ravichandran, A. (2011). A closed form solution to robust subspace estimation and clustering. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1801-1807). Piscataway, NJ: IEEE.
    • (2011) , pp. 1801-1807
    • Favaro, P.1    Vidal, R.2    Ravichandran, A.3
  • 19
    • 84863078680 scopus 로고    scopus 로고
    • Salient object detection by composition
    • In Proceedings of the International Conference on Computer Vision
    • Feng, J., Wei, Y., Tao, L., Zhang, C., & Sun, J. (2011). Salient object detection by composition. In Proceedings of the International Conference on Computer Vision (pp. 1028-1035).
    • (2011) , pp. 1028-1035
    • Feng, J.1    Wei, Y.2    Tao, L.3    Zhang, C.4    Sun, J.5
  • 20
    • 33745843241 scopus 로고    scopus 로고
    • Object detection by contour segment networks
    • In Proceedings of the European Conference on Computer Vision. New York: Springer
    • Ferrari, V., Tuytelaars, T., & Van Gool, L. (2006). Object detection by contour segment networks. In Proceedings of the European Conference on Computer Vision (pp. 14-28). New York: Springer.
    • (2006) , pp. 14-28
    • Ferrari, V.1    Tuytelaars, T.2    Van Gool, L.3
  • 21
    • 0002211517 scopus 로고
    • A dual algorithm for the solution of nonlinear variationalproblems via finite element approximation
    • Gabay, D., & Mercier, B. (1976). A dual algorithm for the solution of nonlinear variationalproblems via finite element approximation. Computers andMathematics with Applications, 2(1), 17-40.
    • (1976) Computers andMathematics with Applications , vol.2 , Issue.1 , pp. 17-40
    • Gabay, D.1    Mercier, B.2
  • 23
    • 33845575890 scopus 로고    scopus 로고
    • Unsupervised learning of categories from sets of partially matching image features
    • In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE
    • Grauman, K., & Darrell, T. (2006). Unsupervised learning of categories from sets of partially matching image features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 19-25). Piscataway, NJ: IEEE.
    • (2006) , pp. 19-25
    • Grauman, K.1    Darrell, T.2
  • 24
    • 0004151494 scopus 로고    scopus 로고
    • Matrix analysis
    • Cambridge: Cambridge University Press.
    • Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. Cambridge: Cambridge University Press.
    • (2012)
    • Horn, R.A.1    Johnson, C.R.2
  • 25
    • 79959999198 scopus 로고    scopus 로고
    • FDDB: A benchmark for face detection in unconstrained settings (Tech
    • Rep. No. UM-CS-2010-009). Amherst: University of Massachusetts.
    • Jain, V., & Learned-Miller, E. (2010). FDDB: A benchmark for face detection in unconstrained settings (Tech. Rep. No. UM-CS-2010-009). Amherst: University of Massachusetts.
    • (2010)
    • Jain, V.1    Learned-Miller, E.2
  • 26
    • 84862275658 scopus 로고    scopus 로고
    • Structured sparse principal component analysis
    • In Proceedings of the International Conference on Artificial Intelligence and Statistics. Cambridge, MA: MIT Press
    • Jenatton, R., Obozinski, G., & Bach, F. (2010). Structured sparse principal component analysis. In Proceedings of the International Conference on Artificial Intelligence and Statistics (pp. 366-373). Cambridge, MA: MIT Press.
    • (2010) , pp. 366-373
    • Jenatton, R.1    Obozinski, G.2    Bach, F.3
  • 27
    • 84867850232 scopus 로고    scopus 로고
    • Robust and practical face recognition via structured sparsity
    • In Proceedings of the 12th European Conference on Computer Vision. New York: Springer
    • Jia, K., Chan, T.-H., & Ma, Y. (2012). Robust and practical face recognition via structured sparsity. In Proceedings of the 12th European Conference on Computer Vision (pp. 331-344). New York: Springer.
    • (2012) , pp. 331-344
    • Jia, K.1    Chan, T.-H.2    Ma, Y.3
  • 29
    • 68849114784 scopus 로고    scopus 로고
    • Foreground focus: Unsupervised learning from partially matching images
    • Lee, Y., & Grauman, K. (2009). Foreground focus: Unsupervised learning from partially matching images. International Journal of Computer Vision, 85(2), 143-166.
    • (2009) International Journal of Computer Vision , vol.85 , Issue.2 , pp. 143-166
    • Lee, Y.1    Grauman, K.2
  • 30
    • 84877731812 scopus 로고    scopus 로고
    • Robust computation of linear models, or how to find a needle in a haystack
    • CoRR, abs/1202.4044.
    • Lerman, G., McCoy, M. B., Tropp, J. A., & Zhang, T. (2012). Robust computation of linear models, or how to find a needle in a haystack. CoRR, abs/1202.4044.
    • (2012)
    • Lerman, G.1    McCoy, M.B.2    Tropp, J.A.3    Zhang, T.4
  • 31
    • 77955690054 scopus 로고    scopus 로고
    • The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
    • Arxiv preprint arXiv:1009.5055.
    • Lin, Z., Chen, M., & Ma, Y. (2010). The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. Arxiv preprint arXiv:1009.5055.
    • (2010)
    • Lin, Z.1    Chen, M.2    Ma, Y.3
  • 32
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • In Proceedings of the 26th International Conference on Machine Learning. Madison,WI: Omnipress
    • Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In Proceedings of the 26th International Conference on Machine Learning (pp. 663-670). Madison,WI: Omnipress.
    • (2010) , pp. 663-670
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 33
    • 80052411944 scopus 로고    scopus 로고
    • Multi-subspace representation and discovery
    • In D. Gunopulos, T. Hofmann, D. Malerba, & M. Vazirgiannis (Eds.). New York: Springer
    • Luo, D., Nie, F., Ding, C., & Huang, H. (2011). Multi-subspace representation and discovery. In D. Gunopulos, T. Hofmann, D. Malerba, & M. Vazirgiannis (Eds.), Machine Learning and Knowledge Discovery in Databases (pp. 405-420). New York: Springer.
    • (2011) Machine Learning and Knowledge Discovery in Databases , pp. 405-420
    • Luo, D.1    Nie, F.2    Ding, C.3    Huang, H.4
  • 34
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • In IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE
    • Pandey, M., & Lazebnik, S. (2011). Scene recognition and weakly supervised object localization with deformable part-based models. In IEEE International Conference on Computer Vision (pp. 1307-1314). Piscataway, NJ: IEEE.
    • (2011) , pp. 1307-1314
    • Pandey, M.1    Lazebnik, S.2
  • 36
    • 84928726721 scopus 로고    scopus 로고
    • Localized content based image retrieval
    • In Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval. New York: ACM
    • Rahmani, R., Goldman, S. A., Zhang, H., Krettek, J., & Fritts, J. E. (2005). Localized content based image retrieval. In Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval (pp. 227-236). New York: ACM.
    • (2005) , pp. 227-236
    • Rahmani, R.1    Goldman, S.A.2    Zhang, H.3    Krettek, J.4    Fritts, J.E.5
  • 37
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • Russell, B., Freeman, W., Efros, A., Sivic, J., & Zisserman, A. (2006). Using multiple segmentations to discover objects and their extent in image collections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1605-1614).
    • (2006) , pp. 1605-1614
    • Russell, B.1    Freeman, W.2    Efros, A.3    Sivic, J.4    Zisserman, A.5
  • 38
    • 84875895297 scopus 로고    scopus 로고
    • One-class multiple instance learning and applications to target tracking
    • In Proceedings of the Asian Conference on Computer Vision. New York: Springer
    • Sankaranarayanan, K., & Davis, J. (2012). One-class multiple instance learning and applications to target tracking. In Proceedings of the Asian Conference on Computer Vision (pp. 126-139). New York: Springer.
    • (2012) , pp. 126-139
    • Sankaranarayanan, K.1    Davis, J.2
  • 39
    • 84880972942 scopus 로고    scopus 로고
    • Alternating direction methods for latent variable gaussian graphical model selection
    • ShiqianMa, L. X., & Zou, H. (2013). Alternating direction methods for latent variable gaussian graphical model selection. Neural Computation, 25(8), 2172-2198.
    • (2013) Neural Computation , vol.25 , Issue.8 , pp. 2172-2198
    • Shiqianma, L.X.1    Zou, H.2
  • 40
    • 79957510064 scopus 로고    scopus 로고
    • Recovering low-rank and sparse components of matrices from incomplete and noisy observations
    • Tao, M., & Yuan, X. (2011). Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM Journal on Optimization, 21(1), 57-81.
    • (2011) SIAM Journal on Optimization , vol.21 , Issue.1 , pp. 57-81
    • Tao, M.1    Yuan, X.2
  • 41
    • 70450162109 scopus 로고    scopus 로고
    • Towards a practical face recognition system: Robust registration and illumination via sparse representation
    • In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE
    • Wagner, A., Wright, J., Ganesh, A., Zhou, Z., & Ma, Y. (2009). Towards a practical face recognition system: Robust registration and illumination via sparse representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 597-604). Piscataway, NJ: IEEE.
    • (2009) , pp. 597-604
    • Wagner, A.1    Wright, J.2    Ganesh, A.3    Zhou, Z.4    Ma, Y.5
  • 42
    • 56449086489 scopus 로고    scopus 로고
    • Adaptive p-posterior mixture-model kernels for multiple instance learning
    • In Proceedings of the 25th Annual International Conference on Machine Learning. New York: ACM
    • Wang, H.-Y., Yang, Q., & Zha, H. (2008). Adaptive p-posterior mixture-model kernels for multiple instance learning. In Proceedings of the 25th Annual International Conference on Machine Learning (pp. 1136-1143). New York: ACM.
    • (2008) , pp. 1136-1143
    • Wang, H.-Y.1    Yang, Q.2    Zha, H.3
  • 43
    • 84875908344 scopus 로고    scopus 로고
    • One-class multiple instance learning via robust PCA for common object discovery
    • In Proceedings of the Asian Conference on Computer Vision. New York: Springer
    • Wang, X., Zhang, Z., Ma, Y., Bai, X., Liu, W., & Tu, Z. (2012). One-class multiple instance learning via robust PCA for common object discovery. In Proceedings of the Asian Conference on Computer Vision (pp. 246-258). New York: Springer.
    • (2012) , pp. 246-258
    • Wang, X.1    Zhang, Z.2    Ma, Y.3    Bai, X.4    Liu, W.5    Tu, Z.6
  • 47
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMS with latent variables
    • In Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM
    • Yu, C., & Joachims, T. (2009). Learning structural SVMS with latent variables. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 1169-1176). New York: ACM.
    • (2009) , pp. 1169-1176
    • Yu, C.1    Joachims, T.2
  • 48
    • 0012349465 scopus 로고    scopus 로고
    • EM-DD: An improved multiple-instance learning technique
    • In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.). Cambridge, MA: MIT Press
    • Zhang, Q., & Goldman, S. A. (2001). EM-DD: An improved multiple-instance learning technique. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems (pp. 1073-1080). Cambridge, MA: MIT Press.
    • (2001) Advances in neural information processing systems , pp. 1073-1080
    • Zhang, Q.1    Goldman, S.A.2
  • 50
    • 71149085943 scopus 로고    scopus 로고
    • Multi-instance learning by treating instances as non-IID samples
    • In Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM
    • Zhou, Z.-H., Sun, Y.-Y.,&Li, Y-F. (2009).Multi-instance learning by treating instances as non-IID samples. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 1249-1256). New York: ACM.
    • (2009) , pp. 1249-1256
    • Zhou, Z.-H.1    Sun, Y.-Y.2    Li, Y.-F.3
  • 51
    • 84866696900 scopus 로고    scopus 로고
    • Unsupervised object class discovery via saliency-guided multiple class learning
    • In IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE
    • Zhu, J.,Wu, J.,Wei, Y., Chang, E.,&Tu, Z. (2012). Unsupervised object class discovery via saliency-guided multiple class learning. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 3218-3225). Piscataway, NJ: IEEE.
    • (2012) , pp. 3218-3225
    • Zhu, J.1    Wu, J.2    Wei, Y.3    Chang, E.4    Tu, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.