메뉴 건너뛰기




Volumn , Issue , 2010, Pages 153-162

Retrieving landmark and non-landmark images from community photo collections

Author keywords

image clustering; image retrieval; sub linear indexing, geotagging

Indexed keywords

DATA SETS; IMAGE CLUSTERING; IMAGE DATASETS; PHOTO COLLECTIONS; REFERENCE IMAGE; SPATIAL MATCHING; STATE OF THE ART; SUB-LINEAR INDEXING, GEOTAGGING; VISUAL CONTENT; VISUAL FEATURE; WIKIPEDIA;

EID: 78650978976     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1873951.1873973     Document Type: Conference Paper
Times cited : (102)

References (36)
  • 3
    • 73849136385 scopus 로고    scopus 로고
    • Large-scale discovery of spatially related images
    • O. Chum and J. Matas. Large-scale discovery of spatially related images. PAMI, 32(2):371-377, 2010.
    • (2010) PAMI , vol.32 , Issue.2 , pp. 371-377
    • Chum, O.1    Matas, J.2
  • 4
    • 33745175816 scopus 로고    scopus 로고
    • Locally optimized RANSAC
    • Springer Verlag
    • O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In DAGM, page 236. Springer Verlag, 2003.
    • (2003) DAGM , pp. 236
    • Chum, O.1    Matas, J.2    Kittler, J.3
  • 5
    • 50649105215 scopus 로고    scopus 로고
    • Total recall: Automatic query expansion with a generative feature model for object retrieval
    • O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In ICCV, 2007.
    • (2007) ICCV
    • Chum, O.1    Philbin, J.2    Sivic, J.3    Isard, M.4    Zisserman, A.5
  • 7
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M. Fischler and R. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395, 1981.
    • (1981) Communications of the ACM , vol.24 , Issue.6 , pp. 381-395
    • Fischler, M.1    Bolles, R.2
  • 8
    • 85090137388 scopus 로고    scopus 로고
    • I know what you did last summer: Object-level auto-annotation of holiday snaps
    • S. Gammeter, L. Bossard, T. Quack, and L. V. Gool. I know what you did last summer: Object-level auto-annotation of holiday snaps. In ICCV, 2009.
    • (2009) ICCV
    • Gammeter, S.1    Bossard, L.2    Quack, T.3    Gool, L.V.4
  • 10
    • 51949088643 scopus 로고    scopus 로고
    • IM2GPS: Estimating geographic information from a single image
    • J. Hays and A. A. Efros. IM2GPS: Estimating geographic information from a single image. In CVPR, 2008.
    • (2008) CVPR
    • Hays, J.1    Efros, A.A.2
  • 11
  • 12
    • 70449560133 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In ECCV, 2008.
    • (2008) ECCV
    • Jegou, H.1    Douze, M.2    Schmid, C.3
  • 15
    • 37849011950 scopus 로고    scopus 로고
    • How flickr helps us make sense of the world: Context and content in community-contributed media collections
    • L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. How flickr helps us make sense of the world: Context and content in community-contributed media collections. In ACM Multimedia, volume 3, pages 631-640, 2007.
    • (2007) ACM Multimedia , vol.3 , pp. 631-640
    • Kennedy, L.1    Naaman, M.2    Ahern, S.3    Nair, R.4    Rattenbury, T.5
  • 16
    • 77953196178 scopus 로고    scopus 로고
    • Detecting objects in large image collections and videos by efficient subimage retrieval
    • C. Lampert. Detecting objects in large image collections and videos by efficient subimage retrieval. In ICCV, 2009.
    • (2009) ICCV
    • Lampert, C.1
  • 17
    • 56749152232 scopus 로고    scopus 로고
    • Modeling and recognition of landmark image collections using iconic scene graphs
    • Springer
    • X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. In ECCV, pages 427-440. Springer, 2008.
    • (2008) ECCV , pp. 427-440
    • Li, X.1    Wu, C.2    Zach, C.3    Lazebnik, S.4    Frahm, J.-M.5
  • 18
    • 77953228638 scopus 로고    scopus 로고
    • Landmark classification in large-scale image collections
    • Y. Li, D. J. Crandall, and D. P. Huttenlocher. Landmark classification in large-scale image collections. In ICCV, 2009.
    • (2009) ICCV
    • Li, Y.1    Crandall, D.J.2    Huttenlocher, D.P.3
  • 19
    • 0035686858 scopus 로고    scopus 로고
    • Local feature view clustering for 3D object recognition
    • D. Lowe. Local feature view clustering for 3D object recognition. In CVPR, 2001.
    • (2001) CVPR
    • Lowe, D.1
  • 20
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 21
    • 3142736062 scopus 로고    scopus 로고
    • Robust wide-baseline stereo from maximally stable extremal regions
    • J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing, 22(10):761-767, 2004.
    • (2004) Image and Vision Computing , vol.22 , Issue.10 , pp. 761-767
    • Matas, J.1    Chum, O.2    Urban, M.3    Pajdla, T.4
  • 23
    • 70349675925 scopus 로고    scopus 로고
    • Fast approximate nearest neighbors with automatic algorithm configuration
    • M. Muja and D. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In ICCV, 2009.
    • (2009) ICCV
    • Muja, M.1    Lowe, D.2
  • 24
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In CVPR, 2006.
    • (2006) CVPR
    • Nister, D.1    Stewenius, H.2
  • 25
    • 70450179951 scopus 로고    scopus 로고
    • Efficient representation of local geometry for large scale object retrieval
    • M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In CVPR, 2009.
    • (2009) CVPR
    • Perdoch, M.1    Chum, O.2    Matas, J.3
  • 26
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 27
    • 70449566291 scopus 로고    scopus 로고
    • World-scale mining of objects and events from community photo collections
    • T. Quack, B. Leibe, and L. Van Gool. World-scale mining of objects and events from community photo collections. In CIVR, pages 47-56, 2008.
    • (2008) CIVR , pp. 47-56
    • Quack, T.1    Leibe, B.2    Van Gool, L.3
  • 29
    • 51949097915 scopus 로고    scopus 로고
    • Optimised KD-trees for fast image descriptor matching
    • C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor matching. In CVPR, 2008.
    • (2008) CVPR
    • Silpa-Anan, C.1    Hartley, R.2
  • 30
    • 50949090870 scopus 로고    scopus 로고
    • Scene summarization for online image collections
    • I. Simon, N. Snavely, and S. Seitz. Scene summarization for online image collections. In ICCV, 2007.
    • (2007) ICCV
    • Simon, I.1    Snavely, N.2    Seitz, S.3
  • 31
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In ICCV, pages 1470-1477, 2003.
    • (2003) ICCV , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 34
    • 2542544743 scopus 로고    scopus 로고
    • A kernel approach for vector quantization with guaranteed distortion bounds
    • M. Tipping and B. Schölkopf. A kernel approach for vector quantization with guaranteed distortion bounds. In Artificial Intelligence and Statistics, pages 129-134, 2001.
    • (2001) Artificial Intelligence and Statistics , pp. 129-134
    • Tipping, M.1    Schölkopf, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.