메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 639-647

Learning to boost filamentary structure segmentation

Author keywords

[No Author keywords available]

Indexed keywords

BLOOD VESSELS; COMPUTER VISION; RESTORATION; TREES (MATHEMATICS);

EID: 84973882663     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.80     Document Type: Conference Paper
Times cited : (41)

References (29)
  • 2
    • 84858068946 scopus 로고    scopus 로고
    • Fast retinal vessel detection and measurement using wavelets and edge location refinement
    • P. Bankhead, C. Scholfield, J. McGeown, and T. Curtis. Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE, 2012.
    • (2012) PLoS ONE
    • Bankhead, P.1    Scholfield, C.2    McGeown, J.3    Curtis, T.4
  • 3
    • 77955184131 scopus 로고    scopus 로고
    • Tree2Tree: Neuron segmentation for generation of neuronal morphology
    • S. Basu, A. Aksel, B. Condron, and S. Acton. Tree2Tree: Neuron segmentation for generation of neuronal morphology. In ISBI, 2010.
    • (2010) ISBI
    • Basu, S.1    Aksel, A.2    Condron, B.3    Acton, S.4
  • 4
    • 84924867540 scopus 로고    scopus 로고
    • Localizing and extracting filament distributions from microscopy images
    • S. Basu, C. Liu, and G. Rohde. Localizing and extracting filament distributions from microscopy images. Journal of Microscopy, 258 (1): 13-23, 2015.
    • (2015) Journal of Microscopy , vol.258 , Issue.1 , pp. 13-23
    • Basu, S.1    Liu, C.2    Rohde, G.3
  • 5
    • 84885143291 scopus 로고    scopus 로고
    • Learning context cues for synapse segmentation
    • C. Becker, K. Ali, G. Knott, and P. Fua. Learning context cues for synapse segmentation. IEEE Trans. Med. Imag., 32 (10): 1864-77, 2013.
    • (2013) IEEE Trans. Med. Imag. , vol.32 , Issue.10 , pp. 1864-1877
    • Becker, C.1    Ali, K.2    Knott, G.3    Fua, P.4
  • 6
    • 84894617371 scopus 로고    scopus 로고
    • Supervised feature learning for curvilinear structure segmentation
    • C. Becker, R. Rigamonti, V. Lepetit, and P. Fua. Supervised feature learning for curvilinear structure segmentation. In MICCAI, 2013.
    • (2013) MICCAI
    • Becker, C.1    Rigamonti, R.2    Lepetit, V.3    Fua, P.4
  • 8
    • 79960117913 scopus 로고    scopus 로고
    • Learning latent tree graphical models
    • M. Choi, V. Tan, A. Anandkumar, and A. Willsky. Learning latent tree graphical models. JMLR, 12: 1771-1812, 2011.
    • (2011) JMLR , vol.12 , pp. 1771-1812
    • Choi, M.1    Tan, V.2    Anandkumar, A.3    Willsky, A.4
  • 9
    • 84892452313 scopus 로고    scopus 로고
    • Tracing retinal vessel trees by transductive inference
    • J. De, H. Li, and L. Cheng. Tracing retinal vessel trees by transductive inference. BMC Bioinformatics, 15 (20): 1-20, 2014.
    • (2014) BMC Bioinformatics , vol.15 , Issue.20 , pp. 1-20
    • De, J.1    Li, H.2    Cheng, L.3
  • 11
    • 84945936653 scopus 로고    scopus 로고
    • N4-fields: Neural network nearest neighbor fields for image transforms
    • Y. Ganin and V. Lempitsky. N4-fields: Neural network nearest neighbor fields for image transforms. In ACCV, pages 536-51. 2014.
    • (2014) ACCV , pp. 536-551
    • Ganin, Y.1    Lempitsky, V.2
  • 12
    • 0033623974 scopus 로고    scopus 로고
    • Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response
    • A. Hoover, V. Kouznetsova, and M. Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imag, 19 (3): 203-10, 2000.
    • (2000) IEEE Trans Med Imag , vol.19 , Issue.3 , pp. 203-210
    • Hoover, A.1    Kouznetsova, V.2    Goldbaum, M.3
  • 13
    • 70350339005 scopus 로고    scopus 로고
    • Three dimensional curvilinear structure detection using optimally oriented flux
    • M. Law and A. Chung. Three dimensional curvilinear structure detection using optimally oriented flux. In ECCV. 2008.
    • (2008) ECCV
    • Law, M.1    Chung, A.2
  • 14
    • 84887354170 scopus 로고    scopus 로고
    • Sketch tokens: A learned mid-level representation for contour and object detection
    • J. Lim, C. Zitnick, and P. Dollar. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013.
    • (2013) CVPR
    • Lim, J.1    Zitnick, C.2    Dollar, P.3
  • 15
    • 78650885895 scopus 로고    scopus 로고
    • A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features
    • D. Marin, A. Aquino, M. Gegundez-Arias, and J. Bravo. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag., 30 (1): 146-58, 2011.
    • (2011) IEEE Trans. Med. Imag. , vol.30 , Issue.1 , pp. 146-158
    • Marin, D.1    Aquino, A.2    Gegundez-Arias, M.3    Bravo, J.4
  • 17
    • 77954289614 scopus 로고    scopus 로고
    • Neuron tracing in perspective
    • E. Meijering. Neuron tracing in perspective. Cytometry A., 77 (7): 693-704, 2010.
    • (2010) Cytometry A. , vol.77 , Issue.7 , pp. 693-704
    • Meijering, E.1
  • 18
    • 33748118111 scopus 로고    scopus 로고
    • Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction
    • A. Mendonca and A. Campilho. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag., 25 (9): 1200-13, 2006.
    • (2006) IEEE Trans. Med. Imag. , vol.25 , Issue.9 , pp. 1200-1213
    • Mendonca, A.1    Campilho, A.2
  • 19
    • 84879912869 scopus 로고    scopus 로고
    • A survey on latent tree models and applications
    • R. Mourad, C. Sinoquet, N. Zhang, T. Liu, and P. Leray. A survey on latent tree models and applications. JAIR, 47: 157-203, 2013.
    • (2013) JAIR , vol.47 , pp. 157-203
    • Mourad, R.1    Sinoquet, C.2    Zhang, N.3    Liu, T.4    Leray, P.5
  • 20
    • 34948844097 scopus 로고    scopus 로고
    • Retinal blood vessel segmentation using line operators and support vector classification
    • E. Ricci and R. Perfetti. Retinal blood vessel segmentation using line operators and support vector classification. IEEE. Trans. Med. Imag., 26 (10): 1357-65, 2007.
    • (2007) IEEE. Trans. Med. Imag. , vol.26 , Issue.10 , pp. 1357-1365
    • Ricci, E.1    Perfetti, R.2
  • 21
    • 84872519433 scopus 로고    scopus 로고
    • Accurate and efficient linear structure segmentation by leveraging ad hoc features
    • R. Rigamonti and V. Lepetit. Accurate and efficient linear structure segmentation by leveraging ad hoc features. In MICCAI, 2012.
    • (2012) MICCAI
    • Rigamonti, R.1    Lepetit, V.2
  • 22
    • 33748099339 scopus 로고    scopus 로고
    • Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification
    • J. Soares, J. Leandro, R. Cesar, H. Jelinek, and M. Cree. Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans. Med. Imag., 25 (9): 1214-22, 2006.
    • (2006) IEEE Trans. Med. Imag. , vol.25 , Issue.9 , pp. 1214-1222
    • Soares, J.1    Leandro, J.2    Cesar, R.3    Jelinek, H.4    Cree, M.5
  • 24
    • 84898821314 scopus 로고    scopus 로고
    • Detecting irregular curvilinear structures in gray scale and color imagery using multi-directional oriented flux
    • E. Turetken, C. Becker, P. Glowacki, F. Benmansour, and P. Fua. Detecting irregular curvilinear structures in gray scale and color imagery using multi-directional oriented flux. In ICCV, 2013.
    • (2013) ICCV
    • Turetken, E.1    Becker, C.2    Glowacki, P.3    Benmansour, F.4    Fua, P.5
  • 25
    • 84973917335 scopus 로고    scopus 로고
    • Reconstructing loopy curvilinear structures using integer programming
    • E. Turetken, F. Benmansour, B. Andres, H. Pfister, and P. Fua. Reconstructing loopy curvilinear structures using integer programming. In CVPR, 2014.
    • (2014) CVPR
    • Turetken, E.1    Benmansour, F.2    Andres, B.3    Pfister, H.4    Fua, P.5
  • 26
    • 79958172203 scopus 로고    scopus 로고
    • Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors
    • E. Turetken, G. Gonzalez, C. Blum, and P. Fua. Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, 9 (2-3): 279-302, 2011.
    • (2011) Neuroinformatics , vol.9 , Issue.2-3 , pp. 279-302
    • Turetken, E.1    Gonzalez, G.2    Blum, C.3    Fua, P.4
  • 27
    • 79958104510 scopus 로고    scopus 로고
    • A broadly applicable 3-d neuron tracing method based on opencurve snake
    • Y. Wang, A. Narayanaswamy, C. Tsai, and B. Roysam. A broadly applicable 3-d neuron tracing method based on opencurve snake. Neuroinformatics, 9 (2-3): 193-217, 2011.
    • (2011) Neuroinformatics , vol.9 , Issue.2-3 , pp. 193-217
    • Wang, Y.1    Narayanaswamy, A.2    Tsai, C.3    Roysam, B.4
  • 28
    • 0031569941 scopus 로고    scopus 로고
    • Stochastic completion fields: A neural model of illusory contour shape and salience
    • L. Williams and D. Jacobs. Stochastic completion fields: A neural model of illusory contour shape and salience. neural computation, 9 (4): 837-58, 2006.
    • (2006) Neural Computation , vol.9 , Issue.4 , pp. 837-858
    • Williams, L.1    Jacobs, D.2
  • 29
    • 79958161539 scopus 로고    scopus 로고
    • Automated reconstruction of neuronal morphology based on local geometrical and global structural models
    • T. Zhao, J. Xie, F. Amat, N. Clack, P. Ahammad, H. Peng, F. Long, and E. Myers. Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9 (2-3): 247-261, 2011.
    • (2011) Neuroinformatics , vol.9 , Issue.2-3 , pp. 247-261
    • Zhao, T.1    Xie, J.2    Amat, F.3    Clack, N.4    Ahammad, P.5    Peng, H.6    Long, F.7    Myers, E.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.