메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1653-1661

Unsupervised tube extraction using transductive learning and dense trajectories

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; EXTRACTION; IMAGE SEGMENTATION; TRAJECTORIES;

EID: 84973879045     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.193     Document Type: Conference Paper
Times cited : (29)

References (26)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • 1
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. IEEE Trans. on PAMI, 34(11):2189-2202, 2012. 1
    • (2012) IEEE Trans. on PAMI , vol.34 , Issue.11 , pp. 2189-2202
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 3
    • 80052912306 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • 3, 4, 8
    • L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010. 3, 4, 8
    • (2010) ECCV
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 4
    • 78149326091 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • 2, 7
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, pages 282-295, 2010. 2, 7
    • (2010) ECCV , pp. 282-295
    • Brox, T.1    Malik, J.2
  • 5
    • 77956008665 scopus 로고    scopus 로고
    • Constrained parametric min-cuts for automatic object segmentation
    • 1
    • J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, pages 3241-3248, 2010. 1
    • (2010) CVPR , pp. 3241-3248
    • Carreira, J.1    Sminchisescu, C.2
  • 7
    • 78149308041 scopus 로고    scopus 로고
    • Category independent object proposals
    • 1
    • I. Endres and D. Hoiem. Category independent object proposals. In ECCV, pages 575-588, 2010. 1
    • (2010) ECCV , pp. 575-588
    • Endres, I.1    Hoiem, D.2
  • 8
    • 84911443425 scopus 로고    scopus 로고
    • Scalable object detection using deep neural networks
    • 3
    • D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In CVPR, pages 2155-2162, 2014. 3
    • (2014) CVPR , pp. 2155-2162
    • Erhan, D.1    Szegedy, C.2    Toshev, A.3    Anguelov, D.4
  • 9
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • 3, 5, 8
    • P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. IEEE Trans. on PAMI, 32(9):1627-1645, 2010. 3, 5, 8
    • (2010) IEEE Trans. on PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.A.3    Ramanan, D.4
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1, 3, 5, 8
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014. 1, 3, 5, 8
    • (2014) CVPR , pp. 580-587
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph based video segmentation
    • 2, 6
    • M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph based video segmentation. In CVPR, 2010. 2, 6
    • (2010) CVPR
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.4
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • 1, 5
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012. 1, 5
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • 2
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In ICCV, pages 1995-2002, 2011. 2
    • (2011) ICCV , pp. 1995-2002
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 17
    • 84939802616 scopus 로고    scopus 로고
    • Spatiotemporal object detection proposals
    • 2, 6, 7
    • D. Oneata, J. Revaud, J. J. Verbeek, and C. Schmid. Spatiotemporal object detection proposals. In ECCV, 2014. 2, 6, 7
    • (2014) ECCV
    • Oneata, D.1    Revaud, J.2    Verbeek, J.J.3    Schmid, C.4
  • 18
    • 84898831797 scopus 로고    scopus 로고
    • Fast object segmentation in unconstrained video
    • 2, 7
    • A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In ICCV, pages 1777-1784, 2013. 2, 7
    • (2013) ICCV , pp. 1777-1784
    • Papazoglou, A.1    Ferrari, V.2
  • 19
    • 84866674032 scopus 로고    scopus 로고
    • Learning object class detectors from weakly annotated video
    • 1, 2, 6, 7
    • A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In CVPR, 2012. 1, 2, 6, 7
    • (2012) CVPR
    • Prest, A.1    Leistner, C.2    Civera, J.3    Schmid, C.4    Ferrari, V.5
  • 20
    • 51949084792 scopus 로고    scopus 로고
    • Action Mach a spatio-temporal maximum average correlation height filter for action recognition
    • 6
    • M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008. 6
    • (2008) CVPR
    • Rodriguez, M.D.1    Ahmed, J.2    Shah, M.3
  • 22
    • 84887368146 scopus 로고    scopus 로고
    • Self-paced learning for long-term tracking
    • 5
    • J. S. Supancic III and D. Ramanan. Self-paced learning for long-term tracking. In CVPR, pages 2379-2386, 2013. 5
    • (2013) CVPR , pp. 2379-2386
    • Supancic, J.S.1    Ramanan, D.2
  • 25
    • 80052877143 scopus 로고    scopus 로고
    • Action recognition by dense trajectories
    • 2, 3
    • H. Wang, A. Kläser, C. Schmid, and C. Liu. Action recognition by dense trajectories. In CVPR, pages 3169-3176, 2011. 2, 3
    • (2011) CVPR , pp. 3169-3176
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.4
  • 26
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • 2, 3
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, pages 3551-3558, 2013. 2, 3
    • (2013) ICCV , pp. 3551-3558
    • Wang, H.1    Schmid, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.