메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1404-1412

Minimum barrier salient object detection at 80 FPS

Author keywords

[No Author keywords available]

Indexed keywords

BELT DRIVES; BENCHMARKING; COMPUTER VISION; OBJECT RECOGNITION; PIXELS;

EID: 84973866256     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.165     Document Type: Conference Paper
Times cited : (472)

References (39)
  • 2
    • 84866687480 scopus 로고    scopus 로고
    • Exploiting local and global patch rarities for saliency detection
    • A. Borji and L. Itti. Exploiting local and global patch rarities for saliency detection. In CVPR, 2012.
    • (2012) CVPR
    • Borji, A.1    Itti, L.2
  • 3
    • 84883229216 scopus 로고    scopus 로고
    • Salient object detection: A benchmark
    • A. Borji, D. N. Sihite, and L. Itti. Salient object detection: A benchmark. In ECCV. 2012.
    • (2012) ECCV
    • Borji, A.1    Sihite, D.N.2    Itti, L.3
  • 4
    • 84864039864 scopus 로고    scopus 로고
    • Saliency based on information maximization
    • N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005.
    • (2005) NIPS
    • Bruce, N.1    Tsotsos, J.2
  • 5
    • 84923094805 scopus 로고    scopus 로고
    • Global contrast based salient region detection
    • M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu. Global contrast based salient region detection. TPAMI, 37(3):569-582, 2015.
    • (2015) TPAMI , vol.37 , Issue.3 , pp. 569-582
    • Cheng, M.-M.1    Mitra, N.J.2    Huang, X.3    Torr, P.H.S.4    Hu, S.-M.5
  • 9
    • 79954596629 scopus 로고    scopus 로고
    • A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks
    • K. C. Ciesielski and J. K. Udupa. A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks. Computer Vision and Image Understanding, 115(6):721-734, 2011.
    • (2011) Computer Vision and Image Understanding , vol.115 , Issue.6 , pp. 721-734
    • Ciesielski, K.C.1    Udupa, J.K.2
  • 11
    • 0742303474 scopus 로고    scopus 로고
    • The image foresting transform: Theory, algorithms, and applications
    • A. X. Falcão, J. Stolfi, and R. de Alencar Lotufo. The image foresting transform: Theory, algorithms, and applications. TPAMI, 26(1):19-29, 2004.
    • (2004) TPAMI , vol.26 , Issue.1 , pp. 19-29
    • Falcão, A.X.1    Stolfi, J.2    De Alencar Lotufo, R.3
  • 12
    • 84865331032 scopus 로고    scopus 로고
    • Context-aware saliency detection
    • S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. TPAMI, 34(10):1915-1926, 2012.
    • (2012) TPAMI , vol.34 , Issue.10 , pp. 1915-1926
    • Goferman, S.1    Zelnik-Manor, L.2    Tal, A.3
  • 13
    • 70450199650 scopus 로고    scopus 로고
    • Random walks on graphs to model saliency in images
    • V. Gopalakrishnan, Y. Hu, and D. Rajan. Random walks on graphs to model saliency in images. In CVPR, 2009.
    • (2009) CVPR
    • Gopalakrishnan, V.1    Hu, Y.2    Rajan, D.3
  • 14
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. TPAMI, 20(11):1254-1259, 1998.
    • (1998) TPAMI , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 16
    • 84939553542 scopus 로고    scopus 로고
    • Salient object detection: A discriminative regional feature integration approach
    • H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li. Salient object detection: A discriminative regional feature integration approach. In CVPR. IEEE, 2013.
    • (2013) CVPR. IEEE
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Wu, Y.4    Zheng, N.5    Li, S.6
  • 17
    • 0003153058 scopus 로고
    • Shifts in selective visual attention: Towards the underlying neural circuitry
    • Springer
    • C. Koch and S. Ullman. Shifts in selective visual attention: Towards the underlying neural circuitry. In Matters of Intelligence, pages 115-141. Springer, 1987.
    • (1987) Matters of Intelligence , pp. 115-141
    • Koch, C.1    Ullman, S.2
  • 19
    • 84991215721 scopus 로고    scopus 로고
    • Saliency detection via dense and sparse reconstruction
    • X. Li, H. Lu, L. Zhang, X. Ruan, and M.-H. Yang. Saliency detection via dense and sparse reconstruction. In ICCV. IEEE, 2013.
    • (2013) ICCV. IEEE
    • Li, X.1    Lu, H.2    Zhang, L.3    Ruan, X.4    Yang, M.-H.5
  • 20
    • 84911400874 scopus 로고    scopus 로고
    • The secrets of salient object segmentation
    • Y. Li, X. Hou, C. Koch, J. Rehg, and A. Yuille. The secrets of salient object segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Li, Y.1    Hou, X.2    Koch, C.3    Rehg, J.4    Yuille, A.5
  • 21
    • 84909604910 scopus 로고    scopus 로고
    • Adaptive partial differential equation learning for visual saliency detection
    • R. Liu, J. Cao, Z. Lin, and S. Shan. Adaptive partial differential equation learning for visual saliency detection. In CVPR, 2014.
    • (2014) CVPR
    • Liu, R.1    Cao, J.2    Lin, Z.3    Shan, S.4
  • 23
    • 84911405020 scopus 로고    scopus 로고
    • Learning optimal seeds for diffusion-based salient object detection
    • S. Lu, V. Mahadevan, and N. Vasconcelos. Learning optimal seeds for diffusion-based salient object detection. In CVPR, 2014.
    • (2014) CVPR
    • Lu, S.1    Mahadevan, V.2    Vasconcelos, N.3
  • 26
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In CVPR, 2012.
    • (2012) CVPR
    • Perazzi, F.1    Krahenbuhl, P.2    Pritch, Y.3    Hornung, A.4
  • 27
    • 0002323305 scopus 로고
    • Distance functions on digital pictures
    • A. Rosenfeld and J. L. Pfaltz. Distance functions on digital pictures. Pattern recognition, 1(1):33-61, 1968.
    • (1968) Pattern Recognition , vol.1 , Issue.1 , pp. 33-61
    • Rosenfeld, A.1    Pfaltz, J.L.2
  • 29
    • 84866672748 scopus 로고    scopus 로고
    • A unified approach to salient object detection via low rank matrix recovery
    • X. Shen and Y. Wu. A unified approach to salient object detection via low rank matrix recovery. In CVPR, 2012.
    • (2012) CVPR
    • Shen, X.1    Wu, Y.2
  • 31
    • 0030142754 scopus 로고    scopus 로고
    • New geodosic distance transforms for grayscale images
    • P. J. Toivanen. New geodosic distance transforms for grayscale images. Pattern Recognition Letters, 17(5):437-450, 1996.
    • (1996) Pattern Recognition Letters , vol.17 , Issue.5 , pp. 437-450
    • Toivanen, P.J.1
  • 32
    • 0027576716 scopus 로고
    • Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms
    • L. Vincent. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. TIP, 2(2):176-201, 1993.
    • (1993) TIP , vol.2 , Issue.2 , pp. 176-201
    • Vincent, L.1
  • 33
    • 84887344857 scopus 로고    scopus 로고
    • Geodesic saliency using background priors
    • Y. Wei, F. Wen, W. Zhu, and J. Sun. Geodesic saliency using background priors. In ECCV. 2012.
    • (2012) ECCV
    • Wei, Y.1    Wen, F.2    Zhu, W.3    Sun, J.4
  • 34
    • 84887322898 scopus 로고    scopus 로고
    • Hierarchical saliency detection
    • Q. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical saliency detection. In CVPR, 2013.
    • (2013) CVPR
    • Yan, Q.1    Xu, L.2    Shi, J.3    Jia, J.4
  • 36
    • 84898819857 scopus 로고    scopus 로고
    • Saliency detection: A Boolean map approach
    • J. Zhang and S. Sclaroff. Saliency detection: A Boolean map approach. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, J.1    Sclaroff, S.2
  • 37
    • 84952700067 scopus 로고    scopus 로고
    • Exploiting surroundedness for saliency detection: A Boolean map approach
    • J. Zhang and S. Sclaroff. Exploiting surroundedness for saliency detection: A Boolean map approach. Accepted at TPAMI, 2015.
    • (2015) Accepted at TPAMI
    • Zhang, J.1    Sclaroff, S.2
  • 38
    • 84959212183 scopus 로고    scopus 로고
    • Saliency detection by multi-context deep learning
    • R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detection by multi-context deep learning. In CVPR, 2015.
    • (2015) CVPR
    • Zhao, R.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 39
    • 84911390996 scopus 로고    scopus 로고
    • Saliency optimization from robust background detection
    • W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency optimization from robust background detection. In CVPR, 2014.
    • (2014) CVPR
    • Zhu, W.1    Liang, S.2    Wei, Y.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.