메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 316-324

Projection onto the manifold of elongated structures for accurate extraction

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 84973863140     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.44     Document Type: Conference Paper
Times cited : (36)

References (47)
  • 1
    • 24644484887 scopus 로고    scopus 로고
    • Probabilistic modeling-based vessel enhancement in thoracic ct scans
    • G. Agam and C. Wu. Probabilistic Modeling-Based Vessel Enhancement in Thoracic CT Scans. In CVPR, 2005.
    • (2005) CVPR
    • Agam, G.1    Wu, C.2
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. Trans. Sig. Proc., 2006.
    • (2006) Trans. Sig. Proc.
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 64149124430 scopus 로고    scopus 로고
    • Segmentation of SBFSEM volume data of neural tissue by hierarchical classification
    • B. Andres, U. Koethe, M. Helmstaedter, W. Denk, and F. Hamprecht. Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification. In DAGM, 2008.
    • (2008) DAGM
    • Andres, B.1    Koethe, U.2    Helmstaedter, M.3    Denk, W.4    Hamprecht, F.5
  • 5
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour Detection and Hierarchical Image Segmentation. PAMI, 2011.
    • (2011) PAMI
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 6
    • 84885143291 scopus 로고    scopus 로고
    • Learning context cues for synapse segmentation
    • C. Becker, K. Ali, G. Knott, and P. Fua. Learning Context Cues for Synapse Segmentation. TMI, 2013.
    • (2013) TMI
    • Becker, C.1    Ali, K.2    Knott, G.3    Fua, P.4
  • 7
    • 84894617371 scopus 로고    scopus 로고
    • Supervised feature learning for curvilinear structure segmentation
    • C. Becker, R. Rigamonti, V. Lepetit, and P. Fua. Supervised Feature Learning for Curvilinear Structure Segmentation. In MICCAI, 2013.
    • (2013) MICCAI
    • Becker, C.1    Rigamonti, R.2    Lepetit, V.3    Fua, P.4
  • 8
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • J. Canny. A Computational Approach to Edge Detection. PAMI, 1986.
    • (1986) PAMI
    • Canny, J.1
  • 9
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. In NIPS, 2012.
    • (2012) NIPS
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.3    Schmidhuber, J.4
  • 10
    • 18844381758 scopus 로고    scopus 로고
    • Region filling and object removal by exemplar-based image inpainting
    • A. Criminisi, P. Perez, and K. Toyama. Region Filling and Object Removal by Exemplar-Based Image Inpainting. TIP, 2004.
    • (2004) TIP
    • Criminisi, A.1    Perez, P.2    Toyama, K.3
  • 11
    • 84973862837 scopus 로고    scopus 로고
    • Image denoising by sparse 3d transformation-domain collaborative filtering
    • K. Dabov, A. Foi, and V. Katkovnik. Image Denoising by Sparse 3D Transformation-Domain Collaborative Filtering. JMLR, 2007.
    • (2007) JMLR
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3
  • 12
    • 84947781852 scopus 로고    scopus 로고
    • Fast edge detection using structured forests
    • P. Dollár and C. L. Zitnick. Fast Edge Detection Using Structured Forests. PAMI, 2015.
    • (2015) PAMI
    • Dollár, P.1    Zitnick, C.L.2
  • 15
    • 84866713677 scopus 로고    scopus 로고
    • Efficient automatic 3d-reconstruction of branching neurons from em data
    • J. Funke, D. Andres, F. A. Hamprecht, A. Cardona, and M. Cook. Efficient Automatic 3D-Reconstruction of Branching Neurons from EM Data. CVPR, 2012.
    • (2012) CVPR
    • Funke, J.1    Andres, D.2    Hamprecht, F.A.3    Cardona, A.4    Cook, M.5
  • 16
    • 84959181749 scopus 로고    scopus 로고
    • N4-Fields: Neural network nearest neighbor fields for image transforms
    • Y. Ganin and V. Lempitsky. N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms. In ACCV, 2014.
    • (2014) ACCV
    • Ganin, Y.1    Lempitsky, V.2
  • 20
    • 84856646828 scopus 로고    scopus 로고
    • Structured class-labels in random forests for semantic image labelling
    • P. Kontschieder, S. Bulo, H. Bischof, and M. Pelillo. Structured Class-Labels in Random Forests for Semantic Image Labelling. In ICCV, 2011.
    • (2011) ICCV
    • Kontschieder, P.1    Bulo, S.2    Bischof, H.3    Pelillo, M.4
  • 22
    • 70350339005 scopus 로고    scopus 로고
    • Three dimensional curvilinear structure detection using optimally oriented flux
    • M. Law and A. Chung. Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux. In ECCV, 2008.
    • (2008) ECCV
    • Law, M.1    Chung, A.2
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recognition. PIEEE, 1998.
    • (1998) PIEEE
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 24
    • 84887354170 scopus 로고    scopus 로고
    • Sketch tokens: A learned mid-level representation for contour and object detection
    • J. Lim, C. L. Zitnick, and P. Dollár. Sketch Tokens: A Learned Mid-Level Representation for Contour and Object Detection. In CVPR, 2013.
    • (2013) CVPR
    • Lim, J.1    Zitnick, C.L.2    Dollár, P.3
  • 29
    • 84910604880 scopus 로고    scopus 로고
    • Hair enhancement in dermoscopic images using dual-channel quaternion tubularness filters and mrf-based multi-label optimization
    • H. Mirzaalian, T. Lee, and G. Hamarneh. Hair Enhancement in Dermoscopic Images Using Dual-Channel Quaternion Tubularness Filters and MRF-Based Multi-Label Optimization. TIP, 2014.
    • (2014) TIP
    • Mirzaalian, H.1    Lee, T.2    Hamarneh, G.3
  • 31
    • 84906339516 scopus 로고    scopus 로고
    • Scalable nearest neighbor algorithms for high dimensional data
    • M. Muja and D. G. Lowe. Scalable Nearest Neighbor Algorithms for High Dimensional Data. PAMI, 2014.
    • (2014) PAMI
    • Muja, M.1    Lowe, D.G.2
  • 33
    • 70450173654 scopus 로고    scopus 로고
    • Extraction of tubular structures over an orientation domain
    • M. Pechaud, G. Peyré, and R. Keriven. Extraction of Tubular Structures over an Orientation Domain. In CVPR, 2009.
    • (2009) CVPR
    • Pechaud, M.1    Peyré, G.2    Keriven, R.3
  • 34
    • 84877752264 scopus 로고    scopus 로고
    • Discriminatively trained sparse code gradients for contour detection
    • X. Ren and L. Bo. Discriminatively Trained Sparse Code Gradients for Contour Detection. In NIPS, 2012.
    • (2012) NIPS
    • Ren, X.1    Bo, L.2
  • 38
    • 84898825227 scopus 로고    scopus 로고
    • Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks
    • M. Seyedhosseini, M. Sajjadi, and T. Tasdizen. Image Segmentation with Cascaded Hierarchical Models and Logistic Disjunctive Normal Networks. In ICCV, 2013.
    • (2013) ICCV
    • Seyedhosseini, M.1    Sajjadi, M.2    Tasdizen, T.3
  • 39
    • 84911451086 scopus 로고    scopus 로고
    • Multiscale centerline detection by learning a scale-space distance transform
    • A. Sironi, V. Lepetit, and P. Fua. Multiscale Centerline Detection by Learning a Scale-Space Distance Transform. In CVPR, 2014.
    • (2014) CVPR
    • Sironi, A.1    Lepetit, V.2    Fua, P.3
  • 41
    • 33845584832 scopus 로고    scopus 로고
    • Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures
    • M. Sofka and C. Stewart. Retinal Vessel Centerline Extraction Using Multiscale Matched Filters, Confidence and Edge Measures. TMI, 2006.
    • (2006) TMI
    • Sofka, M.1    Stewart, C.2
  • 43
    • 78149316482 scopus 로고    scopus 로고
    • Auto-context and its applications to high-level vision tasks and 3d brain image segmentation
    • Z. Tu and X. Bai. Auto-Context and Its Applications to High-Level Vision Tasks and 3D Brain Image Segmentation. PAMI, 2009.
    • (2009) PAMI
    • Tu, Z.1    Bai, X.2
  • 44
    • 84898821314 scopus 로고    scopus 로고
    • Detecting irregular curvilinear structures in gray scale and color imagery using multi-directional oriented flux
    • E. Turetken, C. Becker, P. Glowacki, F. Benmansour, and P. Fua. Detecting Irregular Curvilinear Structures in Gray Scale and Color Imagery Using Multi-Directional Oriented Flux. In ICCV, 2013.
    • (2013) ICCV
    • Turetken, E.1    Becker, C.2    Glowacki, P.3    Benmansour, F.4    Fua, P.5
  • 47
    • 79957990394 scopus 로고    scopus 로고
    • Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes
    • Y. Zheng, M. Loziczonek, B. Georgescu, S. Zhou, F. Vega-Higuera, and D. Comaniciu. Machine Learning Based Vesselness Measurement for Coronary Artery Segmentation in Cardiac CT Volumes. SPIE, 2011.
    • (2011) SPIE
    • Zheng, Y.1    Loziczonek, M.2    Georgescu, B.3    Zhou, S.4    Vega-Higuera, F.5    Comaniciu, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.