메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1698-1705

A higher-order CRF model for road network extraction

Author keywords

CRF; graphical models; high order potentials; road network extraction

Indexed keywords

COMPLEX STRUCTURE; CONNECTED NETWORKS; CRF; GRAPHICAL MODEL; HIGH-ORDER POTENTIALS; ROAD NETWORK EXTRACTION; STRAIGHT-LINE SEGMENTS; TOPOLOGICAL CORRECTNESS;

EID: 84887346107     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.222     Document Type: Conference Paper
Times cited : (208)

References (31)
  • 1
    • 0016998819 scopus 로고
    • Computer recognition of roads from satellite pictures
    • R. Bajcsy and M. Tavakoli. Computer recognition of roads from satellite pictures. IEEE T. Systems, Man, and Cybernetics, 6(9):623-637, 1976.
    • (1976) IEEE T. Systems, Man, and Cybernetics , vol.6 , Issue.9 , pp. 623-637
    • Bajcsy, R.1    Tavakoli, M.2
  • 2
    • 0742276813 scopus 로고    scopus 로고
    • Interactive organ segmentation using graph cuts
    • Y. Boykov and M.-P. Jolly. Interactive organ segmentation using graph cuts. In MICCAI, 2000.
    • (2000) MICCAI
    • Boykov, Y.1    Jolly, M.-P.2
  • 3
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI, 23(11):1222-1239, 2001.
    • (2001) PAMI , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 57349095405 scopus 로고    scopus 로고
    • Material-specific adaptation of color invariant features
    • G. J. Burghouts and J.-M. Geusebroek. Material-specific adaptation of color invariant features. Pattern Recognition Letters, 30(3):306-313, 2009.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.3 , pp. 306-313
    • Burghouts, G.J.1    Geusebroek, J.-M.2
  • 6
    • 33744951081 scopus 로고    scopus 로고
    • Efficient belief propagation for early vision
    • P. Felzenszwalb and D. Huttenlocher. Efficient belief propagation for early vision. IJCV, 70(1), 2006.
    • (2006) IJCV , vol.70 , Issue.1
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 7
    • 0019392785 scopus 로고
    • Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique
    • M. Fischler, J. Tenenbaum, and H. Wolf. Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique. Computer Graphics and Image Processing, 15:201-223, 1981.
    • (1981) Computer Graphics and Image Processing , vol.15 , pp. 201-223
    • Fischler, M.1    Tenenbaum, J.2    Wolf, H.3
  • 8
    • 51949110976 scopus 로고    scopus 로고
    • Object categorization using co-occurrence, location and appearance
    • C. Galleguillos, A. Rabinovich, and S. Belongie. Object categorization using co-occurrence, location and appearance. In CVPR, 2008.
    • (2008) CVPR
    • Galleguillos, C.1    Rabinovich, A.2    Belongie, S.3
  • 9
    • 52449123642 scopus 로고    scopus 로고
    • Multi-class segmentation with relative location prior
    • S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller. Multi-class segmentation with relative location prior. IJCV, 80(3):300-316, 2008.
    • (2008) IJCV , vol.80 , Issue.3 , pp. 300-316
    • Gould, S.1    Rodgers, J.2    Cohen, D.3    Elidan, G.4    Koller, D.5
  • 11
    • 0037906334 scopus 로고    scopus 로고
    • Automatic extraction of urban road networks from multi-view aerial imagery
    • S. Hinz and A. Baumgartner. Automatic extraction of urban road networks from multi-view aerial imagery. ISPRS J. Photogrammetry and Remote Sensing, 58:83-98, 2003.
    • (2003) ISPRS J. Photogrammetry and Remote Sensing , vol.58 , pp. 83-98
    • Hinz, S.1    Baumgartner, A.2
  • 12
    • 36348958613 scopus 로고    scopus 로고
    • Road network extraction and intersection detection from aerial images by tracking road footprints
    • J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka. Road network extraction and intersection detection from aerial images by tracking road footprints. IEEE TGRS, 45(12):4144-4157, 2007.
    • (2007) IEEE TGRS , vol.45 , Issue.12 , pp. 4144-4157
    • Hu, J.1    Razdan, A.2    Femiani, J.C.3    Cui, M.4    Wonka, P.5
  • 13
    • 51949098412 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order potentials for enforcing label consistency. In CVPR, 2008.
    • (2008) CVPR
    • Kohli, P.1    Ladicky, L.2    Torr, P.H.S.3
  • 14
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI, 28(10), 2006.
    • (2006) PAMI , vol.28 , Issue.10
    • Kolmogorov, V.1
  • 15
    • 27644525535 scopus 로고    scopus 로고
    • Point Processes for unsupervised line network extraction in remote sensing
    • C. Lacoste, X. Descombes, and J. Zerubia. Point Processes for unsupervised line network extraction in remote sensing. PAMI, 27(10):1568-1579, 2005.
    • (2005) PAMI , vol.27 , Issue.10 , pp. 1568-1579
    • Lacoste, C.1    Descombes, X.2    Zerubia, J.3
  • 17
    • 0034229367 scopus 로고    scopus 로고
    • Automatic extraction of roads from aerial images based on scale space and snakes
    • I. Laptev, H. Mayer, T. Lindeberg, W. Eckstein, C. Steger, and A. Baumgartner. Automatic extraction of roads from aerial images based on scale space and snakes. MVA, 12:23-31, 2000.
    • (2000) MVA , vol.12 , pp. 23-31
    • Laptev, I.1    Mayer, H.2    Lindeberg, T.3    Eckstein, W.4    Steger, C.5    Baumgartner, A.6
  • 18
    • 33751430327 scopus 로고    scopus 로고
    • A test of automatic road extraction approaches
    • H. Mayer, S. Hinz, U. Bacher, and E. Baltsavias. A test of automatic road extraction approaches. In IAPRS, volume 36(3), pages 209-214, 2006.
    • (2006) IAPRS , vol.36 , Issue.3 , pp. 209-214
    • Mayer, H.1    Hinz, S.2    Bacher, U.3    Baltsavias, E.4
  • 19
    • 84055175817 scopus 로고    scopus 로고
    • Learning to detect roads in highresolution aerial images
    • V. Mnih and G. E. Hinton. Learning to detect roads in highresolution aerial images. In ECCV, 2010.
    • (2010) ECCV
    • Mnih, V.1    Hinton, G.E.2
  • 20
    • 84867136367 scopus 로고    scopus 로고
    • Learning to label aerial images from noisy data
    • V. Mnih and G. E. Hinton. Learning to label aerial images from noisy data. In ICML, 2012.
    • (2012) ICML
    • Mnih, V.1    Hinton, G.E.2
  • 21
    • 33845423382 scopus 로고    scopus 로고
    • TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV, 2006.
    • (2006) ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 22
    • 2142813785 scopus 로고    scopus 로고
    • A Gibbs Point Process for road extraction from remotely sensed images
    • R. Stoica, X. Descombes, and J. Zerubia. A Gibbs Point Process for road extraction from remotely sensed images. IJCV, 57(2):121-136, 2004.
    • (2004) IJCV , vol.57 , Issue.2 , pp. 121-136
    • Stoica, R.1    Descombes, X.2    Zerubia, J.3
  • 23
    • 84899024607 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • A. Torralba, K. Murphy, andW. Freeman. Contextual models for object detection using boosted random fields. In NIPS'05.
    • NIPS'05
    • Torralba, A.1    Murphy, K.2    Freeman, W.3
  • 24
    • 0036875247 scopus 로고    scopus 로고
    • Road detection in dense urban areas using SAR imagery and the usefulness of multiple views
    • F. Tupin, B. Houshmand, and M. Datcu. Road detection in dense urban areas using SAR imagery and the usefulness of multiple views. IEEE TGRS, 40(11):2405-2414, 2002.
    • (2002) IEEE TGRS , vol.40 , Issue.11 , pp. 2405-2414
    • Tupin, F.1    Houshmand, B.2    Datcu, M.3
  • 25
    • 0032028665 scopus 로고    scopus 로고
    • Detection of linear features in SAR images: Application to road network extraction
    • F. Tupin, H. Ma?tre, J.-F. Mangin, J.-M. Nicolas, and E. Pechersky. Detection of linear features in SAR images: Application to road network extraction. IEEE TGRS, 36(2):434-453, 1998.
    • (1998) IEEE TGRS , vol.36 , Issue.2 , pp. 434-453
    • Tupin, F.1    Matre, H.2    Mangin, J.-F.3    Nicolas, J.-M.4    Pechersky, E.5
  • 26
    • 80052886953 scopus 로고    scopus 로고
    • Superpixels and supervoxels in an energy optimization framework
    • O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and supervoxels in an energy optimization framework. In ECCV'10.
    • ECCV'10
    • Veksler, O.1    Boykov, Y.2    Mehrani, P.3
  • 27
    • 51949090071 scopus 로고    scopus 로고
    • Graph cut based image segmentation with connectivity priors
    • S. Vincente, V. Kolmogorov, and C. Rother. Graph cut based image segmentation with connectivity priors. In CVPR'08.
    • CVPR'08
    • Vincente, S.1    Kolmogorov, V.2    Rother, C.3
  • 29
    • 50649119191 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In CVPR, 2005.
    • (2005) CVPR
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 30
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic classification
    • J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic classification. In CVPR, 2012.
    • (2012) CVPR
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 31
    • 84864977637 scopus 로고    scopus 로고
    • Road network extraction from airborne LiDAR data using scene context
    • J. Zhao and S. You. Road network extraction from airborne LiDAR data using scene context. In CVPR Workshops, 2012
    • (2012) CVPR Workshops
    • Zhao, J.1    You, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.