메뉴 건너뛰기




Volumn 108, Issue , 2015, Pages 106-113

Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis

Author keywords

Artificial neural networks; Building energy prediction; Genetic Algorithm; Particle Swarm Optimization; Principal component analysis

Indexed keywords

ALGORITHMS; BUILDINGS; ELECTRIC POWER UTILIZATION; FORECASTING; GENETIC ALGORITHMS; NEURAL NETWORKS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO);

EID: 84942304105     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2015.09.002     Document Type: Article
Times cited : (211)

References (40)
  • 1
    • 84930200952 scopus 로고    scopus 로고
    • The influence of environment education on critical thinking and environmental attitude
    • S. Arslan The influence of environment education on critical thinking and environmental attitude Proc. Soc. Behav. Sci. 55 2012 902 909
    • (2012) Proc. Soc. Behav. Sci. , vol.55 , pp. 902-909
    • Arslan, S.1
  • 2
    • 84899627804 scopus 로고    scopus 로고
    • Residential energy consumption trends, main drivers and policies in Lithuania
    • D. Štreimikiene Residential energy consumption trends, main drivers and policies in Lithuania Renew. Sustain. Energy Rev. 35 2014 285 293
    • (2014) Renew. Sustain. Energy Rev. , vol.35 , pp. 285-293
    • Štreimikiene, D.1
  • 3
    • 84904745397 scopus 로고    scopus 로고
    • Energy consumption, associated questions and some answers
    • V.I. Ugursal Energy consumption, associated questions and some answers Appl. Energy 130 2014 783 792
    • (2014) Appl. Energy , vol.130 , pp. 783-792
    • Ugursal, V.I.1
  • 5
    • 84911946942 scopus 로고    scopus 로고
    • Energy assessment of office buildings in China using China building energy codes and LEED 2.2
    • H. Chen, W. Lee, and X. Wang Energy assessment of office buildings in China using China building energy codes and LEED 2.2 Energy Build. 86 2015 514 524
    • (2015) Energy Build. , vol.86 , pp. 514-524
    • Chen, H.1    Lee, W.2    Wang, X.3
  • 6
    • 84890278566 scopus 로고    scopus 로고
    • A review on the basics of building energy estimation
    • N. Fumo A review on the basics of building energy estimation Renew. Sustain. Energy Rev. 31 2014 53 60
    • (2014) Renew. Sustain. Energy Rev. , vol.31 , pp. 53-60
    • Fumo, N.1
  • 7
    • 84876971423 scopus 로고    scopus 로고
    • Zero energy buildings and sustainable development implications - A review
    • D.H. Li, L. Yang, and J.C. Lam Zero energy buildings and sustainable development implications - a review Energy 54 2013 1 10
    • (2013) Energy , vol.54 , pp. 1-10
    • Li, D.H.1    Yang, L.2    Lam, J.C.3
  • 8
    • 84917682048 scopus 로고    scopus 로고
    • Simulation of occupancy in buildings
    • X. Feng, D. Yan, and T. Hong Simulation of occupancy in buildings Energy Build. 87 2015 348 359
    • (2015) Energy Build. , vol.87 , pp. 348-359
    • Feng, X.1    Yan, D.2    Hong, T.3
  • 10
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • H. xiang Zhao, and F. Magouls A review on the prediction of building energy consumption Renew. Sustain. Energy Rev. 16 2012 3586 3592
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 3586-3592
    • Xiang Zhao, H.1    Magouls, F.2
  • 11
    • 34047251815 scopus 로고    scopus 로고
    • Calibrated building energy simulation and its application in a high-rise commercial building in Shanghai
    • Y. Pan, Z. Huang, and G. Wu Calibrated building energy simulation and its application in a high-rise commercial building in shanghai Energy Build. 39 2007 651 657
    • (2007) Energy Build. , vol.39 , pp. 651-657
    • Pan, Y.1    Huang, Z.2    Wu, G.3
  • 12
    • 73849140888 scopus 로고    scopus 로고
    • A baseline model for office building energy consumption in hot summer and cold winter region
    • F. Lei, and P. Hu A baseline model for office building energy consumption in hot summer and cold winter region Management and Service Science (MASS) 2009 1 4
    • (2009) Management and Service Science (MASS) , pp. 1-4
    • Lei, F.1    Hu, P.2
  • 14
    • 60249090242 scopus 로고    scopus 로고
    • Prediction of building energy consumption by using artificial neural networks
    • B.B. Ekici, and U.T. Aksoy Prediction of building energy consumption by using artificial neural networks Adv. Eng. Softw. 40 2009 356 362
    • (2009) Adv. Eng. Softw. , vol.40 , pp. 356-362
    • Ekici, B.B.1    Aksoy, U.T.2
  • 16
    • 64849083683 scopus 로고    scopus 로고
    • Applying support vector machine to predict hourly cooling load in the building
    • Q. Li, Q. Meng, J. Cai, H. Yoshino, and A. Mochida Applying support vector machine to predict hourly cooling load in the building Appl. Energy 86 2009 2249 2256
    • (2009) Appl. Energy , vol.86 , pp. 2249-2256
    • Li, Q.1    Meng, Q.2    Cai, J.3    Yoshino, H.4    Mochida, A.5
  • 17
    • 49549124988 scopus 로고    scopus 로고
    • Vapnik's learning theory applied to energy consumption forecasts in residential buildings
    • F. Lai, F. Magoules, and F. Lherminier Vapnik's learning theory applied to energy consumption forecasts in residential buildings Int. J. Comput. Math. 85 2008 1563 1588
    • (2008) Int. J. Comput. Math. , vol.85 , pp. 1563-1588
    • Lai, F.1    Magoules, F.2    Lherminier, F.3
  • 19
    • 70349540335 scopus 로고    scopus 로고
    • The relationship between energy consumption and economic growth in China based on ANFIS
    • Z. Xingping, and M. Yuling The relationship between energy consumption and economic growth in China based on ANFIS Intelligent Systems and Applications (ISA) 2009 1 4
    • (2009) Intelligent Systems and Applications (ISA) , pp. 1-4
    • Xingping, Z.1    Yuling, M.2
  • 20
    • 79953741212 scopus 로고    scopus 로고
    • A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory
    • J. Guo, J. Wu, and R. Wang A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory Energy Build. 43 2011 1273 1279
    • (2011) Energy Build. , vol.43 , pp. 1273-1279
    • Guo, J.1    Wu, J.2    Wang, R.3
  • 21
    • 84901684155 scopus 로고    scopus 로고
    • Forecasting the annual electricity consumption of Turkey using an optimized grey model
    • C. Hamzacebi, and H.A. Es Forecasting the annual electricity consumption of Turkey using an optimized grey model Energy 70 2014 165 171
    • (2014) Energy , vol.70 , pp. 165-171
    • Hamzacebi, C.1    Es, H.A.2
  • 22
    • 84876157910 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks: A review
    • S. Ding, H. Li, C. Su, J. Yu, and F. Jin Evolutionary artificial neural networks: a review Artif. Intell. Rev. 39 2013 251 260
    • (2013) Artif. Intell. Rev. , vol.39 , pp. 251-260
    • Ding, S.1    Li, H.2    Su, C.3    Yu, J.4    Jin, F.5
  • 23
  • 24
    • 33646870136 scopus 로고    scopus 로고
    • Modeling and predicting building's energy use with artificial neural networks: Methods and results
    • S. Karatasou, M. Santamouris, and V. Geros Modeling and predicting building's energy use with artificial neural networks: Methods and results Energy Build. 38 2006 949 958
    • (2006) Energy Build. , vol.38 , pp. 949-958
    • Karatasou, S.1    Santamouris, M.2    Geros, V.3
  • 25
    • 84922822619 scopus 로고    scopus 로고
    • Hourly prediction of a building's electricity consumption using case-based reasoning, artificial neural networks and principal component analysis
    • R. Platon, V.R. Dehkordi, and J. Martel Hourly prediction of a building's electricity consumption using case-based reasoning, artificial neural networks and principal component analysis Energy Build. 92 2015 10 18
    • (2015) Energy Build. , vol.92 , pp. 10-18
    • Platon, R.1    Dehkordi, V.R.2    Martel, J.3
  • 26
    • 84905395972 scopus 로고    scopus 로고
    • A prediction model based on neural networks for the energy consumption of a bioclimatic building
    • R. Mena, F. Rodríguez, M. Castilla, and M. Arahal A prediction model based on neural networks for the energy consumption of a bioclimatic building Energy Build. 82 2014 142 155
    • (2014) Energy Build. , vol.82 , pp. 142-155
    • Mena, R.1    Rodríguez, F.2    Castilla, M.3    Arahal, M.4
  • 27
    • 84880266711 scopus 로고    scopus 로고
    • Energy analysis of a building using artificial neural network: A review
    • R. Kumar, R. Aggarwal, and J. Sharma Energy analysis of a building using artificial neural network: a review Energy Build. 65 2013 352 358
    • (2013) Energy Build. , vol.65 , pp. 352-358
    • Kumar, R.1    Aggarwal, R.2    Sharma, J.3
  • 28
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • H. Hippert, C. Pedreira, and R. Souza Neural networks for short-term load forecasting: a review and evaluation IEEE Trans. Power Syst. 16 2001 44 55
    • (2001) IEEE Trans. Power Syst. , vol.16 , pp. 44-55
    • Hippert, H.1    Pedreira, C.2    Souza, R.3
  • 29
    • 32144462264 scopus 로고    scopus 로고
    • Short-term load forecasting based on an adaptive hybrid method
    • S. Fan, and L. Chen Short-term load forecasting based on an adaptive hybrid method IEEE Trans. Power Syst. 21 2006 392 401
    • (2006) IEEE Trans. Power Syst. , vol.21 , pp. 392-401
    • Fan, S.1    Chen, L.2
  • 30
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • M. Khashei, and M. Bijari A novel hybridization of artificial neural networks and ARIMA models for time series forecasting Appl. Soft Comput. 11 2011 2664 2675
    • (2011) Appl. Soft Comput. , vol.11 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2
  • 31
    • 84900323020 scopus 로고    scopus 로고
    • Prediction of particulate matter at street level using artificial neural networks coupling with chaotic particle swarm optimization algorithm
    • H. di He, W.-Z. Lu, and Y. Xue Prediction of particulate matter at street level using artificial neural networks coupling with chaotic particle swarm optimization algorithm Build. Environ. 78 2014 111 117
    • (2014) Build. Environ. , vol.78 , pp. 111-117
    • Di He, H.1    Lu, W.-Z.2    Xue, Y.3
  • 32
    • 80054796723 scopus 로고    scopus 로고
    • Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study
    • K. Li, H. Su, and J. Chu Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study Energy Build. 43 2011 2893 2899
    • (2011) Energy Build. , vol.43 , pp. 2893-2899
    • Li, K.1    Su, H.2    Chu, J.3
  • 35
    • 84886563124 scopus 로고    scopus 로고
    • Particle swarm optimization
    • C. Sammut, G. Webb
    • J. Kennedy Particle swarm optimization C. Sammut, G. Webb, Encyclopedia of Machine Learning 2010 760 766
    • (2010) Encyclopedia of Machine Learning , pp. 760-766
    • Kennedy, J.1
  • 37
    • 79955109772 scopus 로고    scopus 로고
    • A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem - A case study on supply chain model
    • R. Kuo, and Y. Han A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem - a case study on supply chain model Appl. Math. Model. 35 2011 3905 3917
    • (2011) Appl. Math. Model. , vol.35 , pp. 3905-3917
    • Kuo, R.1    Han, Y.2
  • 39
    • 0028699188 scopus 로고
    • Predicting hourly building energy use: The great energy predictor shootout - Overview and discussion of results
    • J.F. Kreider, and J.S. Haberl Predicting hourly building energy use: The great energy predictor shootout - Overview and discussion of results ASHRAE Trans. 100 1994 1104 1118
    • (1994) ASHRAE Trans. , vol.100 , pp. 1104-1118
    • Kreider, J.F.1    Haberl, J.S.2
  • 40
    • 0028720756 scopus 로고
    • Predicting system loads with artificial neural networks: Methods and results from"The great energy predictor shootout"
    • M.B. Ohlsson, T. Roegnvaldsson, C. Peterson, H. Pi, and B. Soederberg Predicting system loads with artificial neural networks: methods and results from"The great energy predictor shootout" ASHRAE Trans. 100 1994 1063 1074
    • (1994) ASHRAE Trans. , vol.100 , pp. 1063-1074
    • Ohlsson, M.B.1    Roegnvaldsson, T.2    Peterson, C.3    Pi, H.4    Soederberg, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.