메뉴 건너뛰기




Volumn 8, Issue 4, 2016, Pages

A framework for large-area mapping of past and present cropping activity using seasonal landsat images and time series metrics

Author keywords

Agriculture; Classification; Crop mapping; Data mining; GEOBIA; Land management; Land use; Landsat Time Series (LTS); Synthetic image generation; Time series

Indexed keywords

AGRICULTURE; CLASSIFICATION (OF INFORMATION); CROPS; DATA MINING; DECISION TREES; LAND USE; NATURAL RESOURCES MANAGEMENT; PHOTOMAPPING; TIME SERIES;

EID: 84971597268     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8040312     Document Type: Article
Times cited : (50)

References (78)
  • 2
    • 84877678838 scopus 로고    scopus 로고
    • Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection
    • Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sens. 2013, 5, 1704-1733
    • (2013) Remote Sens , vol.5 , pp. 1704-1733
    • Rembold, F.1    Atzberger, C.2    Savin, I.3    Rojas, O.4
  • 3
    • 84925399448 scopus 로고    scopus 로고
    • Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape
    • Chipanshi, A.; Zhang, Y.; Kouadio, L.; Newlands, N.; Davidson, A.; Hill, H.; Warren, R.; Qian, B.; Daneshfar, B.; Bedard, F.; et al. Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric. For. Meteorol. 2015, 206, 137-150
    • (2015) Agric. For. Meteorol , vol.206 , pp. 137-150
    • Chipanshi, A.1    Zhang, Y.2    Kouadio, L.3    Newlands, N.4    Davidson, A.5    Hill, H.6    Warren, R.7    Qian, B.8    Daneshfar, B.9    Bedard, F.10
  • 4
    • 84874788283 scopus 로고    scopus 로고
    • Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs
    • Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949-981
    • (2013) Remote Sens , vol.5 , pp. 949-981
    • Atzberger, C.1
  • 6
    • 0036171959 scopus 로고    scopus 로고
    • An overview of land use conflicts in mining communities
    • Hilson, G. An overview of land use conflicts in mining communities. Land Use Policy 2002, 19, 65-73
    • (2002) Land Use Policy , vol.19 , pp. 65-73
    • Hilson, G.1
  • 8
    • 0034655867 scopus 로고    scopus 로고
    • Global land cover classification at 1 km spatial resolution using a classification tree approach
    • Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331-1364
    • (2000) Int. J. Remote Sens , vol.21 , pp. 1331-1364
    • Hansen, M.C.1    Defries, R.S.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 9
    • 41249085127 scopus 로고    scopus 로고
    • Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets
    • Herold, M.; Mayaux, P.;Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538-2556
    • (2008) Remote Sens. Environ , vol.112 , pp. 2538-2556
    • Herold, M.1    Mayaux, P.2    Woodcock, C.E.3    Baccini, A.4    Schmullius, C.5
  • 11
    • 57649217454 scopus 로고    scopus 로고
    • Assessing the geometric accuracy of AVHRR data processed with state vector based navigation as implemented in CAPS (Common AVHRR Processing System)
    • Schmidt, M.; King, E.A.; McVicar, T.R. Assessing the geometric accuracy of AVHRR data processed with state vector based navigation as implemented in CAPS (Common AVHRR Processing System). Can. J. Remote Sens. 2008, 34, 496-508
    • (2008) Can. J. Remote Sens , vol.34 , pp. 496-508
    • Schmidt, M.1    King, E.A.2    McVicar, T.R.3
  • 12
    • 0026359814 scopus 로고
    • Representation of Vegetation by Continental Data Sets Derived from NOAA-AVHRR Data
    • Justice, C.O.; Townshend, J.R.G.; Kalb, V.L. Representation of Vegetation by Continental Data Sets Derived from NOAA-AVHRR Data. Int. J. Remote Sens. 1991, 12, 999-1021
    • (1991) Int. J. Remote Sens , vol.12 , pp. 999-1021
    • Justice, C.O.1    Townshend, J.R.G.2    Kalb, V.L.3
  • 14
    • 0031106029 scopus 로고    scopus 로고
    • Mapping sub-pixel proportional land cover with AVHRR imagery
    • Atkinson, P.M.; Cutler, M.E.J.; Lewis, H. Mapping sub-pixel proportional land cover with AVHRR imagery. Int. J. Remote Sens. 1997, 18, 917-935
    • (1997) Int. J. Remote Sens , vol.18 , pp. 917-935
    • Atkinson, P.M.1    Cutler, M.E.J.2    Lewis, H.3
  • 16
    • 84874775534 scopus 로고    scopus 로고
    • Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets
    • Atzberger, C.; Rembold, F. Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets. Remote Sens. 2013, 5, 1335-1354
    • (2013) Remote Sens , vol.5 , pp. 1335-1354
    • Atzberger, C.1    Rembold, F.2
  • 19
    • 5044236302 scopus 로고    scopus 로고
    • Cropland distributions from temporal unmixing of MODIS data
    • Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 2004, 93, 412-422
    • (2004) Remote Sens. Environ , vol.93 , pp. 412-422
    • Lobell, D.B.1    Asner, G.P.2
  • 20
    • 84857670166 scopus 로고    scopus 로고
    • Identification of "ever-cropped" land (1984-2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study
    • Maxwell, S.K.; Sylvester, K.M. Identification of "ever-cropped" land (1984-2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study. Remote Sens. Environ. 2012, 121, 186-195
    • (2012) Remote Sens. Environ , vol.121 , pp. 186-195
    • Maxwell, S.K.1    Sylvester, K.M.2
  • 22
    • 0035125547 scopus 로고    scopus 로고
    • A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting
    • Genovese, G.; Vignolles, C.; Negre, T.; Passera, G. A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting. A case study on Spain. Agronomie 2001, 21, 91-111
    • (2001) A case study on Spain. Agronomie , vol.21 , pp. 91-111
    • Genovese, G.1    Vignolles, C.2    Negre, T.3    Passera, G.4
  • 23
    • 84938866964 scopus 로고    scopus 로고
    • Land use information for integrated natural resources management-A coordinated national mapping program for Australia
    • Lesslie, R.; Barson, M.; Smith, J. Land use information for integrated natural resources management-A coordinated national mapping program for Australia. J. Land Use Sci. 2006, 1, 45-62
    • (2006) J. Land Use Sci , vol.1 , pp. 45-62
    • Lesslie, R.1    Barson, M.2    Smith, J.3
  • 25
    • 84865430209 scopus 로고    scopus 로고
    • Opening the archive: How free data has enabled the science and monitoring promise of Landsat
    • Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2-10
    • (2012) Remote Sens. Environ , vol.122 , pp. 2-10
    • Wulder, M.A.1    Masek, J.G.2    Cohen, W.B.3    Loveland, T.R.4    Woodcock, C.E.5
  • 27
    • 0032118074 scopus 로고    scopus 로고
    • MODIS land data storage, gridding, and compositing methodology: Level 2 grid
    • Wolfe, R.E.; Roy, D.P.; Vermote, E. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1324-1338
    • (1998) IEEE Trans. Geosci. Remote Sens , vol.36 , pp. 1324-1338
    • Wolfe, R.E.1    Roy, D.P.2    Vermote, E.3
  • 29
    • 0018465733 scopus 로고
    • Red and Photographic Infrared Linear Combinations for Monitoring Vegetation
    • Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127-150
    • (1979) Remote Sens. Environ , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 30
    • 80051985673 scopus 로고    scopus 로고
    • Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project
    • Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project. Remote Sens. Lett. 2011, 2, 279-288
    • (2011) Remote Sens. Lett , vol.2 , pp. 279-288
    • Hansen, M.C.1    Egorov, A.2    Roy, D.P.3    Potapov, P.4    Ju, J.5    Turubanova, S.6    Kommareddy, I.7    Loveland, T.R.8
  • 32
    • 84893445992 scopus 로고    scopus 로고
    • Automated crop field extraction from multi-temporal Web Enabled Landsat Data
    • Yan, L.; Roy, D.P. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sens. Environ. 2014, 144, 42-64
    • (2014) Remote Sens. Environ , vol.144 , pp. 42-64
    • Yan, L.1    Roy, D.P.2
  • 33
    • 84946888122 scopus 로고    scopus 로고
    • Conterminous United States crop field size quantification from multi-temporal Landsat data
    • Yan, L.; Roy, D.P. Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sens. Environ. 2016, 172, 67-86
    • (2016) Remote Sens. Environ , vol.172 , pp. 67-86
    • Yan, L.1    Roy, D.P.2
  • 34
    • 84942518161 scopus 로고    scopus 로고
    • Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery
    • Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356-12379
    • (2015) Remote Sens , vol.7 , pp. 12356-12379
    • Inglada, J.1    Arias, M.2    Tardy, B.3    Hagolle, O.4    Valero, S.5    Morin, D.6    Dedieu, G.7    Sepulcre, G.8    Bontemps, S.9    Defourny, P.10
  • 35
    • 84924044646 scopus 로고    scopus 로고
    • Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time
    • Zhu, Z.;Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67-83
    • (2015) Remote Sens. Environ , vol.162 , pp. 67-83
    • Zhu, Z.1    Woodcock, C.E.2    Holden, C.3    Yang, Z.4
  • 36
    • 84922238304 scopus 로고    scopus 로고
    • Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape
    • Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 2015, 156, 490-499
    • (2015) Remote Sens. Environ , vol.156 , pp. 490-499
    • Müller, H.1    Rufin, P.2    Griffiths, P.3    Barros Siqueira, A.J.4    Hostert, P.5
  • 37
    • 84899887566 scopus 로고    scopus 로고
    • Support Vector Machine Classification of Object-Based Data for Crop Mapping, Using Multi-Temporal Landsat Imagery
    • Devadas, R.; Denham, R.J.; Pringle, M. Support Vector Machine Classification of Object-Based Data for Crop Mapping, Using Multi-Temporal Landsat Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B7, 185-190
    • (2012) Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci , vol.39 , Issue.B7 , pp. 185-190
    • Devadas, R.1    Denham, R.J.2    Pringle, M.3
  • 38
    • 84945907812 scopus 로고    scopus 로고
    • An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series
    • Matton, N.; Canto, G.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sens. 2015, 7, 13208-13232
    • (2015) Remote Sens , vol.7 , pp. 13208-13232
    • Matton, N.1    Canto, G.2    Waldner, F.3    Valero, S.4    Morin, D.5    Inglada, J.6    Arias, M.7    Bontemps, S.8    Koetz, B.9    Defourny, P.10
  • 39
    • 84971670831 scopus 로고    scopus 로고
    • (accessed on 31 July 2015)
    • DNRMStrategic Cropping Land. Available online: https://www.dnrm.qld.gov.au/land/accessing-using-land/strategic-cropping-land (accessed on 31 July 2015)
  • 40
    • 0001815950 scopus 로고
    • The Queensland Environment
    • Burrows, W.H., Scalan, J.C., Rutherford, M.T., Eds.; Department of Primary Industries: Brisbane, Australia
    • Weston, E.J. The Queensland Environment. Native Pastures in Queensland; Burrows, W.H., Scalan, J.C., Rutherford, M.T., Eds.; Department of Primary Industries: Brisbane, Australia, 1988; pp. 13-21
    • (1988) Native Pastures in Queensland , pp. 13-21
    • Weston, E.J.1
  • 41
    • 84971084962 scopus 로고
    • A brief history of national soil classification in Australia since the 1920s
    • Isbell, R. A brief history of national soil classification in Australia since the 1920s. Soil Res. 1992, 30, 825-842
    • (1992) Soil Res , vol.30 , pp. 825-842
    • Isbell, R.1
  • 43
    • 84872822333 scopus 로고    scopus 로고
    • Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery
    • Pringle, M.J.; Denham, R.J.; Devadas, R. Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 276-285
    • (2012) Int. J. Appl. Earth Obs. Geoinf , vol.19 , pp. 276-285
    • Pringle, M.J.1    Denham, R.J.2    Devadas, R.3
  • 44
    • 84971667143 scopus 로고    scopus 로고
    • (accessed on 29 May 2015)
    • DSDIP Regional Planning Interest Act. Available online: http://www.statedevelopment.qld.gov.au/infrastructure-and-planning/regional-planning-interests-act.html (accessed on 29 May 2015)
  • 45
    • 84971670821 scopus 로고    scopus 로고
    • (accessed on 29 May 2015)
    • USGS Earthexplorer. Available online: http://earthexplorer.usgs.gov/(accessed on 29 May 2015)
  • 46
    • 84907478735 scopus 로고    scopus 로고
    • Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in the Australian Landscape
    • Flood, N. Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in the Australian Landscape. Remote Sens. 2014, 6, 7952-7970
    • (2014) Remote Sens , vol.6 , pp. 7952-7970
    • Flood, N.1
  • 47
    • 85027925754 scopus 로고    scopus 로고
    • Enhancing the Detectability of Clouds and Their Shadows in Multitemporal Dryland Landsat Imagery: Extending Fmask
    • Frantz, D.; Roder, A.; Udelhoven, T.; Schmidt, M. Enhancing the Detectability of Clouds and Their Shadows in Multitemporal Dryland Landsat Imagery: Extending Fmask. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1242-1246
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 1242-1246
    • Frantz, D.1    Roder, A.2    Udelhoven, T.3    Schmidt, M.4
  • 48
    • 83455195642 scopus 로고    scopus 로고
    • Object-based cloud and cloud shadow detection in Landsat imagery
    • Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83-94
    • (2012) Remote Sens. Environ , vol.118 , pp. 83-94
    • Zhu, Z.1    Woodcock, C.E.2
  • 49
    • 84876429290 scopus 로고    scopus 로고
    • Robust prediction of time-integrated NDVI
    • Pringle, M.J. Robust prediction of time-integrated NDVI. Int. J. Remote Sens. 2013, 34, 4791-4811
    • (2013) Int. J. Remote Sens , vol.34 , pp. 4791-4811
    • Pringle, M.J.1
  • 52
  • 53
    • 84904466762 scopus 로고    scopus 로고
    • A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables
    • Clewley, D.; Bunting, P.; Shepherd, J.; Gillingham, S.; Flood, N.; Dymond, J.; Lucas, R.; Armston, J.; Moghaddam, M. A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sens. 2014, 6, 6111-6135
    • (2014) Remote Sens , vol.6 , pp. 6111-6135
    • Clewley, D.1    Bunting, P.2    Shepherd, J.3    Gillingham, S.4    Flood, N.5    Dymond, J.6    Lucas, R.7    Armston, J.8    Moghaddam, M.9
  • 56
    • 1242277269 scopus 로고    scopus 로고
    • Assessing crop residue cover using shortwave infrared reflectance
    • Daughtry, C.S.T.; Hunt, E.R., Jr.; Mcmurtrey, J.E., III. Assessing crop residue cover using shortwave infrared reflectance. Remote Sens. Environ. 2004, 90, 126-134
    • (2004) Remote Sens. Environ , vol.90 , pp. 126-134
    • Daughtry, C.S.T.1    Hunt, E.R.2    Mcmurtrey, J.E.3
  • 57
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
    • Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337-352
    • (2004) Remote Sens. Environ , vol.90 , pp. 337-352
    • Haboudane, D.1
  • 58
    • 0026279679 scopus 로고
    • Mapping burns and natural reforestation using Thematic Mapper data
    • Lopez Garcia, M.J.; Caselles, V. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto Int. 1991, 1, 31-37
    • (1991) Geocarto Int , vol.1 , pp. 31-37
    • Lopez Garcia, M.J.1    Caselles, V.2
  • 59
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133-3181
    • (2014) J. Mach. Learn. Res , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 60
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 61
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121-167
    • (1998) Data Min. Knowl. Discov , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 66
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by Randomforest
    • Liaw, A.;Wiener, M. Classification and Regression by Randomforest. R News 2002, 2, 18-22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 69
    • 84971629252 scopus 로고    scopus 로고
    • (accessed on 1 October 2015)
    • DSDIP New Acland Coal Mine Stage 3 Project. Available online: http://www.dilgp.qld.gov.au/assessmentsand-approvals/new-acland-coal-mine-stage-3-expansion.html (accessed on 1 October 2015)
  • 70
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195-213
    • (2002) Remote Sens. Environ , vol.83 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.P.4    Gao, X.5    Ferreira, L.G.6
  • 72
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
    • Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207-2218
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 73
    • 84875061699 scopus 로고    scopus 로고
    • Long term data fusion for a dense time series analysis with MODIS and Landsat imagery in an Australian Savanna
    • Schmidt, M.; Udelhoven, T.; Gill, T.; Röder, A. Long term data fusion for a dense time series analysis with MODIS and Landsat imagery in an Australian Savanna. J. Appl. Remote Sens. 2012, 6
    • (2012) J. Appl. Remote Sens , pp. 6
    • Schmidt, M.1    Udelhoven, T.2    Gill, T.3    Röder, A.4
  • 74
    • 84933528717 scopus 로고    scopus 로고
    • Using RapidEye and MODIS Data Fusion to Monitor Vegetation Dynamics in Semi-Arid Rangelands in South Africa
    • Tewes, A.; Thonfeld, F.; Schmidt, M.; Oomen, R.; Zhu, X.; Dubovyk, O.; Menz, G.; Schellberg, J. Using RapidEye and MODIS Data Fusion to Monitor Vegetation Dynamics in Semi-Arid Rangelands in South Africa. Remote Sens. 2015, 7, 6510-6534
    • (2015) Remote Sens , vol.7 , pp. 6510-6534
    • Tewes, A.1    Thonfeld, F.2    Schmidt, M.3    Oomen, R.4    Zhu, X.5    Dubovyk, O.6    Menz, G.7    Schellberg, J.8
  • 75
    • 84892175132 scopus 로고    scopus 로고
    • Automated Cropland Classification Algorithm (ACCA) for California Using Multi-sensor Remote Sensing
    • Wu, Z. Automated Cropland Classification Algorithm (ACCA) for California Using Multi-sensor Remote Sensing. Photogramm. Eng. Remote Sens. 2014, 80, 81-90
    • (2014) Photogramm. Eng. Remote Sens , vol.80 , pp. 81-90
    • Wu, Z.1
  • 76
    • 77958096283 scopus 로고    scopus 로고
    • Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery
    • Watts, J.D.; Powell, S.L.; Lawrence, R.L.; Hilker, T. Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sens. Environ. 2011, 115, 66-75
    • (2011) Remote Sens. Environ , vol.115 , pp. 66-75
    • Watts, J.D.1    Powell, S.L.2    Lawrence, R.L.3    Hilker, T.4
  • 77
    • 84913553639 scopus 로고    scopus 로고
    • Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia
    • Schmidt, M.; Lucas, R.; Bunting, P.; Verbesselt, J.; Armston, J. Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sens. Environ. 2015, 158, 156-168
    • (2015) Remote Sens. Environ , vol.158 , pp. 156-168
    • Schmidt, M.1    Lucas, R.2    Bunting, P.3    Verbesselt, J.4    Armston, J.5
  • 78
    • 84971592949 scopus 로고    scopus 로고
    • Long term vegetation change detection application in an arid environment using LANDSAT data
    • Benes, T., Eds.; Millpress: Kennebunkport, ME, USA
    • Schmidt, M.; Thamm, H.-P.; Menz, G. Long term vegetation change detection application in an arid environment using LANDSAT data. In Geoinformation for European Wide Integration; Benes, T., Ed.; Millpress: Kennebunkport, ME, USA, 2003; pp. 145-154
    • (2003) Geoinformation for European Wide Integration , pp. 145-154
    • Schmidt, M.1    Thamm, H.-P.2    Menz, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.