메뉴 건너뛰기




Volumn 146, Issue , 2016, Pages 102-109

Phenomic prediction of maize hybrids

Author keywords

Hybrid prediction; LASSO; Maize; Phenomics; Regression

Indexed keywords

BIOLOGICAL METHOD; BIOMASS; DEVELOPMENTAL STAGE; EXPERIMENTAL STUDY; HETEROSIS; HYBRID; IMAGE PROCESSING; MACHINE LEARNING; MAIZE; REGRESSION ANALYSIS;

EID: 84969921409     PISSN: 03032647     EISSN: 18728324     Source Type: Journal    
DOI: 10.1016/j.biosystems.2016.05.008     Document Type: Article
Times cited : (10)

References (20)
  • 1
    • 84903700852 scopus 로고    scopus 로고
    • e!dal – a framework to store, share and publish research data
    • Arend, D., Lange, M., Chen, J., Colmsee, C., Flemming, S., Hecht, D., Scholz, U., e!dal – a framework to store, share and publish research data. BMC Bioinf. 15:1 (2014), 1–13, 10.1186/1471-2105-15-214.
    • (2014) BMC Bioinf. , vol.15 , Issue.1 , pp. 1-13
    • Arend, D.1    Lange, M.2    Chen, J.3    Colmsee, C.4    Flemming, S.5    Hecht, D.6    Scholz, U.7
  • 2
    • 84961290867 scopus 로고    scopus 로고
    • Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis
    • Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., Klukas, C., Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26:12 (2014), 4636–4655.
    • (2014) Plant Cell , vol.26 , Issue.12 , pp. 4636-4655
    • Chen, D.1    Neumann, K.2    Friedel, S.3    Kilian, B.4    Chen, M.5    Altmann, T.6    Klukas, C.7
  • 4
    • 39449096001 scopus 로고    scopus 로고
    • Genetic progress in yield of United States maize (Zea mays L.)
    • Duvick, D.N., Genetic progress in yield of United States maize (Zea mays L.). Maydica 50 (2005), 193–202.
    • (2005) Maydica , vol.50 , pp. 193-202
    • Duvick, D.N.1
  • 5
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T., Tibshirani, R., Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33:1 (2010), 1–22.
    • (2010) J. Stat. Softw. , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 6
    • 0003546136 scopus 로고    scopus 로고
    • Quantitative Genetics in Maize Breeding
    • Springer New York
    • Hallauer, A.R., Carena, M.J., Miranda Filho, J., Quantitative Genetics in Maize Breeding. 2010, Springer, New York.
    • (2010)
    • Hallauer, A.R.1    Carena, M.J.2    Miranda Filho, J.3
  • 8
    • 84867661862 scopus 로고    scopus 로고
    • Analysis of high-throughput plant image data with the information system IAP
    • Klukas, C., Pape, J.M., Entzian, A., Analysis of high-throughput plant image data with the information system IAP. J. Integr. Bioinf., 9(2), 2012, 191.
    • (2012) J. Integr. Bioinf. , vol.9 , Issue.2 , pp. 191
    • Klukas, C.1    Pape, J.M.2    Entzian, A.3
  • 9
    • 84901748701 scopus 로고    scopus 로고
    • Integrated analysis platform: an open-source information system for high-throughput plant phenotyping
    • Klukas, C., Chen, D., Pape, J.M., Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant Physiol. 165:2 (2014), 506–518.
    • (2014) Plant Physiol. , vol.165 , Issue.2 , pp. 506-518
    • Klukas, C.1    Chen, D.2    Pape, J.M.3
  • 10
    • 85018193104 scopus 로고    scopus 로고
    • Regularized group regression methods for genomic prediction: bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
    • Ogutu, J.O., Piepho, H.P., Regularized group regression methods for genomic prediction: bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD. BMC Proc., 8(Suppl. 5), 2014, S7.
    • (2014) BMC Proc. , vol.8 , pp. S7
    • Ogutu, J.O.1    Piepho, H.P.2
  • 11
    • 84863304598 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Foundation for Statistical Computing Vienna, Austria
    • R Core Team, R: A Language and Environment for Statistical Computing. 2014, R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/.
    • (2014)
  • 12
    • 84940183064 scopus 로고    scopus 로고
    • Advanced phenotyping and phenotype data analysis for the plant growth and development study
    • Rahaman, M.M., Chen, D., Gillani, Z., Klukas, C., Chen, M., Advanced phenotyping and phenotype data analysis for the plant growth and development study. Front. Plant Sci., 6, 2015, 619, 10.3389/fpls.2015.00619.
    • (2015) Front. Plant Sci. , vol.6 , pp. 619
    • Rahaman, M.M.1    Chen, D.2    Gillani, Z.3    Klukas, C.4    Chen, M.5
  • 14
    • 75849130121 scopus 로고    scopus 로고
    • Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds
    • Schrag, T.A., Mohring, J., Melchinger, A.E., Kusterer, B., Dhillon, B.S., Piepho, H.P., Frisch, M., Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor. Appl. Genet. 120:2 (2010), 451–461.
    • (2010) Theor. Appl. Genet. , vol.120 , Issue.2 , pp. 451-461
    • Schrag, T.A.1    Mohring, J.2    Melchinger, A.E.3    Kusterer, B.4    Dhillon, B.S.5    Piepho, H.P.6    Frisch, M.7
  • 15
    • 84960602046 scopus 로고
    • The composition of a field of maize
    • Shull, G.H., The composition of a field of maize. J. Heredity os-4:1 (1908), 296–301, 10.1093/jhered/os-4.1.296.
    • (1908) J. Heredity , vol.os-4 , Issue.1 , pp. 296-301
    • Shull, G.H.1
  • 16
    • 84905641294 scopus 로고    scopus 로고
    • Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize
    • Technow, F., Schrag, T.A., Schipprack, W., Bauer, E., Simianer, H., Melchinger, A.E., Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:4 (2014), 1343–1355.
    • (2014) Genetics , vol.197 , Issue.4 , pp. 1343-1355
    • Technow, F.1    Schrag, T.A.2    Schipprack, W.3    Bauer, E.4    Simianer, H.5    Melchinger, A.E.6
  • 17
    • 85194972808 scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R., Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58 (1994), 267–288.
    • (1994) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 19
    • 84942552856 scopus 로고    scopus 로고
    • A fast unified algorithm for solving group-lasso penalize learning problems
    • Yang, Y., Zou, H., A fast unified algorithm for solving group-lasso penalize learning problems. Stat. Comput. 25:6 (2015), 1129–1141, 10.1007/s11222-014-9498-5.
    • (2015) Stat. Comput. , vol.25 , Issue.6 , pp. 1129-1141
    • Yang, Y.1    Zou, H.2
  • 20
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., Lin, Y., Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68 (2006), 49–67.
    • (2006) J. R. Stat. Soc. Ser. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.