메뉴 건너뛰기




Volumn 59, Issue 8, 2016, Pages 1609-1615

Cerebral cortex: a target and source of insulin?

Author keywords

Animal; Basic science; Human; Insulin action; Insulin synthesis; Rat; Review

Indexed keywords

4 AMINOBUTYRIC ACID; GLIBENCLAMIDE; GLUCAGON LIKE PEPTIDE 1; GLUCAGON LIKE PEPTIDE 1 RECEPTOR AGONIST; INSULIN; INSULIN RECEPTOR;

EID: 84969822922     PISSN: 0012186X     EISSN: 14320428     Source Type: Journal    
DOI: 10.1007/s00125-016-3996-2     Document Type: Review
Times cited : (49)

References (85)
  • 1
    • 50749118593 scopus 로고
    • The internal secretion of the pancreas
    • Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7:465–480
    • (1922) J Lab Clin Med , vol.7 , pp. 465-480
    • Banting, F.G.1    Best, C.H.2
  • 2
    • 0028152377 scopus 로고
    • Facilitative glucose transporters
    • Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713–725
    • (1994) Eur J Biochem , vol.219 , pp. 713-725
    • Mueckler, M.1
  • 3
    • 0018090354 scopus 로고
    • Insulin receptors are widely distributed in the central nervous system of the rat
    • Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829
    • (1978) Nature , vol.272 , pp. 827-829
    • Havrankova, J.1    Roth, J.2    Brownstein, M.3
  • 4
    • 0027391758 scopus 로고
    • The cellular and physiological actions of insulin in the central nervous system
    • Wozniak M, Rydzewski B, Baker SP, Raizada MK (1993) The cellular and physiological actions of insulin in the central nervous system. Neurochem Int 22:1–10
    • (1993) Neurochem Int , vol.22 , pp. 1-10
    • Wozniak, M.1    Rydzewski, B.2    Baker, S.P.3    Raizada, M.K.4
  • 5
    • 0024345665 scopus 로고
    • Distribution of insulin receptor-like immunoreactivity in the rat forebrain
    • Unger J, McNeill TH, Moxley RT 3rd et al (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 31:143–157
    • (1989) Neuroscience , vol.31 , pp. 143-157
    • Unger, J.1    McNeill, T.H.2    Moxley, R.T.3
  • 6
    • 0035856949 scopus 로고    scopus 로고
    • Insulin signalling and the regulation of glucose and lipid metabolism
    • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806
    • (2001) Nature , vol.414 , pp. 799-806
    • Saltiel, A.R.1    Kahn, C.R.2
  • 7
    • 0037315042 scopus 로고    scopus 로고
    • Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia
    • Niswender KD, Morrison CD, Clegg DJ et al (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52:227–231
    • (2003) Diabetes , vol.52 , pp. 227-231
    • Niswender, K.D.1    Morrison, C.D.2    Clegg, D.J.3
  • 9
    • 80053621946 scopus 로고    scopus 로고
    • The brain-insulin connection, metabolic diseases and related pathologies
    • Craft S, (ed), Springer, Berlin
    • Gerozissis K (2010) The brain-insulin connection, metabolic diseases and related pathologies. In: Craft S (ed) Diabetes, insulin and Alzheimer's disease. Springer, Berlin, pp 21–42
    • (2010) Diabetes, insulin and Alzheimer's disease , pp. 21-42
    • Gerozissis, K.1
  • 10
    • 84911872075 scopus 로고    scopus 로고
    • Insulin regulates brain function, but how does it get there?
    • Gray SM, Meijer RI, Barrett EJ (2014) Insulin regulates brain function, but how does it get there? Diabetes 63:3992–3997
    • (2014) Diabetes , vol.63 , pp. 3992-3997
    • Gray, S.M.1    Meijer, R.I.2    Barrett, E.J.3
  • 11
    • 80053624120 scopus 로고    scopus 로고
    • Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes
    • McNay EC, Recknagel AK (2011) Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol Learn Mem 96:432–442
    • (2011) Neurobiol Learn Mem , vol.96 , pp. 432-442
    • McNay, E.C.1    Recknagel, A.K.2
  • 12
    • 84872501218 scopus 로고    scopus 로고
    • Insulin in the brain: sources, localization and functions
    • Ghasemi R, Haeri A, Dargahi L et al (2013) Insulin in the brain: sources, localization and functions. Mol Neurobiol 47:145–171
    • (2013) Mol Neurobiol , vol.47 , pp. 145-171
    • Ghasemi, R.1    Haeri, A.2    Dargahi, L.3
  • 13
    • 0037303635 scopus 로고    scopus 로고
    • Brain insulin: regulation, mechanisms of action and functions
    • Gerozissis K, Kyriaki G (2003) Brain insulin: regulation, mechanisms of action and functions. Cell Mol Neurobiol 23:1–25
    • (2003) Cell Mol Neurobiol , vol.23 , pp. 1-25
    • Gerozissis, K.1    Kyriaki, G.2
  • 14
    • 34948822281 scopus 로고    scopus 로고
    • Insulin and insulin-receptor signaling in the brain
    • Bondareva VM, Chistyakova OV (2007) Insulin and insulin-receptor signaling in the brain. Neurochem J 1:176–187
    • (2007) Neurochem J , vol.1 , pp. 176-187
    • Bondareva, V.M.1    Chistyakova, O.V.2
  • 15
    • 0014214923 scopus 로고
    • Insulin in the cerebrospinal fluid
    • Margolis RU, Altszuler N (1967) Insulin in the cerebrospinal fluid. Nature 215:1375–1376
    • (1967) Nature , vol.215 , pp. 1375-1376
    • Margolis, R.U.1    Altszuler, N.2
  • 16
    • 0031456345 scopus 로고    scopus 로고
    • Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays
    • Banks WA, Jaspan JB, Kastin AJ (1997) Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 18:1257–1262
    • (1997) Peptides , vol.18 , pp. 1257-1262
    • Banks, W.A.1    Jaspan, J.B.2    Kastin, A.J.3
  • 17
    • 0023722820 scopus 로고
    • Insulin responses and glucose levels in plasma and cerebrospinal fluid during fasting and refeeding in the rat
    • Strubbe JH, Porte D, Woods SC (1988) Insulin responses and glucose levels in plasma and cerebrospinal fluid during fasting and refeeding in the rat. Physiol Behav 44:205–208
    • (1988) Physiol Behav , vol.44 , pp. 205-208
    • Strubbe, J.H.1    Porte, D.2    Woods, S.C.3
  • 18
    • 0023153353 scopus 로고
    • Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man
    • Wallum BJ, Taborsky GJ, Porte D et al (1987) Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab 64:190–194
    • (1987) J Clin Endocrinol Metab , vol.64 , pp. 190-194
    • Wallum, B.J.1    Taborsky, G.J.2    Porte, D.3
  • 19
    • 34848848771 scopus 로고    scopus 로고
    • Low cerebrospinal fluid insulin levels in obese humans
    • Kern W, Benedict C, Schultes B et al (2006) Low cerebrospinal fluid insulin levels in obese humans. Diabetologia 49:2790–2792
    • (2006) Diabetologia , vol.49 , pp. 2790-2792
    • Kern, W.1    Benedict, C.2    Schultes, B.3
  • 20
    • 0025063027 scopus 로고
    • Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid
    • Schwartz MW, Sipols A, Kahn SE et al (1990) Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am J Physiol 259:E378–383
    • (1990) Am J Physiol , vol.259 , pp. E378-E383
    • Schwartz, M.W.1    Sipols, A.2    Kahn, S.E.3
  • 21
    • 42649145866 scopus 로고    scopus 로고
    • Megalin mediates the transport of leptin across the blood-CSF barrier
    • Dietrich MO, Spuch C, Antequera D et al (2008) Megalin mediates the transport of leptin across the blood-CSF barrier. Neurobiol Aging 29:902–912
    • (2008) Neurobiol Aging , vol.29 , pp. 902-912
    • Dietrich, M.O.1    Spuch, C.2    Antequera, D.3
  • 22
    • 0031718488 scopus 로고    scopus 로고
    • Megalin is an endocytic receptor for insulin
    • Orlando RA, Rader K, Authier F et al (1998) Megalin is an endocytic receptor for insulin. J Am Soc Nephrol 9:1759–1766
    • (1998) J Am Soc Nephrol , vol.9 , pp. 1759-1766
    • Orlando, R.A.1    Rader, K.2    Authier, F.3
  • 23
    • 84880253099 scopus 로고    scopus 로고
    • Endothelial cells actively concentrate insulin during its transendothelial transport
    • Genders AJ, Frison V, Abramson SR, Barrett EJ (2013) Endothelial cells actively concentrate insulin during its transendothelial transport. Microcirculation 20:434–439
    • (2013) Microcirculation , vol.20 , pp. 434-439
    • Genders, A.J.1    Frison, V.2    Abramson, S.R.3    Barrett, E.J.4
  • 24
    • 78650767327 scopus 로고    scopus 로고
    • Caveolin-1 is required for vascular endothelial insulin uptake
    • Wang H, Wang AX, Barrett EJ (2011) Caveolin-1 is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab 300:E134–144
    • (2011) Am J Physiol Endocrinol Metab , vol.300 , pp. E134-E144
    • Wang, H.1    Wang, A.X.2    Barrett, E.J.3
  • 25
    • 40949161074 scopus 로고    scopus 로고
    • Insulin signaling stimulates insulin transport by bovine aortic endothelial cells
    • Wang H, Wang AX, Liu Z, Barrett EJ (2008) Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes 57:540–547
    • (2008) Diabetes , vol.57 , pp. 540-547
    • Wang, H.1    Wang, A.X.2    Liu, Z.3    Barrett, E.J.4
  • 26
    • 84890963093 scopus 로고    scopus 로고
    • Nitric oxide directly promotes vascular endothelial insulin transport
    • Wang H, Wang AX, Aylor K, Barrett EJ (2013) Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes 62:4030–4042
    • (2013) Diabetes , vol.62 , pp. 4030-4042
    • Wang, H.1    Wang, A.X.2    Aylor, K.3    Barrett, E.J.4
  • 27
    • 84865123660 scopus 로고    scopus 로고
    • A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β
    • Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111
    • (2012) Sci Transl Med 4:147ra111
    • Iliff, J.J.1    Wang, M.2    Liao, Y.3
  • 28
    • 0028910245 scopus 로고
    • Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis
    • Orosco M, Gerozissis K, Rouch C, Nicolaïdis S (1995) Feeding-related immunoreactive insulin changes in the PVN-VMH revealed by microdialysis. Brain Res 671:149–158
    • (1995) Brain Res , vol.671 , pp. 149-158
    • Orosco, M.1    Gerozissis, K.2    Rouch, C.3    Nicolaïdis, S.4
  • 29
    • 0030757533 scopus 로고    scopus 로고
    • Insulin responses to a fat meal in hypothalamic microdialysates and plasma
    • Gerozissis K, Orosco M, Rouch C, Nicolaidis S (1997) Insulin responses to a fat meal in hypothalamic microdialysates and plasma. Physiol Behav 62:767–772
    • (1997) Physiol Behav , vol.62 , pp. 767-772
    • Gerozissis, K.1    Orosco, M.2    Rouch, C.3    Nicolaidis, S.4
  • 30
    • 85047698627 scopus 로고    scopus 로고
    • Sniffing neuropeptides: a transnasal approach to the human brain
    • Born J, Lange T, Kern W et al (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5:514–516
    • (2002) Nat Neurosci , vol.5 , pp. 514-516
    • Born, J.1    Lange, T.2    Kern, W.3
  • 31
    • 0031837461 scopus 로고    scopus 로고
    • Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin
    • Banks WA, Kastin AJ (1998) Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19:883–889
    • (1998) Peptides , vol.19 , pp. 883-889
    • Banks, W.A.1    Kastin, A.J.2
  • 32
    • 0021841594 scopus 로고
    • Human blood-brain barrier insulin receptor
    • Pardridge WM, Eisenberg J, Yang J (1985) Human blood-brain barrier insulin receptor. J Neurochem 44:1771–1778
    • (1985) J Neurochem , vol.44 , pp. 1771-1778
    • Pardridge, W.M.1    Eisenberg, J.2    Yang, J.3
  • 33
    • 40349091597 scopus 로고    scopus 로고
    • Intranasal insulin improves cognition and modulates beta-amyloid in early AD
    • Reger MA, Watson GS, Green PS et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70:440–448
    • (2008) Neurology , vol.70 , pp. 440-448
    • Reger, M.A.1    Watson, G.S.2    Green, P.S.3
  • 34
    • 84855613853 scopus 로고    scopus 로고
    • Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial
    • Craft S, Baker LD, Montine TJ et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69:29–38
    • (2012) Arch Neurol , vol.69 , pp. 29-38
    • Craft, S.1    Baker, L.D.2    Montine, T.J.3
  • 35
    • 15244351255 scopus 로고    scopus 로고
    • Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes?
    • Steen E, Terry BM, Rivera EJ et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7:63–80
    • (2005) J Alzheimers Dis , vol.7 , pp. 63-80
    • Steen, E.1    Terry, B.M.2    Rivera, E.J.3
  • 36
    • 0031907459 scopus 로고    scopus 로고
    • Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein
    • Craft S, Peskind E, Schwartz MW et al (1998) Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 50:164–168
    • (1998) E genotype. Neurology , vol.50 , pp. 164-168
    • Craft, S.1    Peskind, E.2    Schwartz, M.W.3
  • 37
    • 84860193946 scopus 로고    scopus 로고
    • Intranasal delivery of biologics to the central nervous system
    • Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64:614–628
    • (2012) Adv Drug Deliv Rev , vol.64 , pp. 614-628
    • Lochhead, J.J.1    Thorne, R.G.2
  • 38
    • 84938691342 scopus 로고    scopus 로고
    • Central nervous system delivery of intranasal insulin: mechanisms of uptake and effects on cognition
    • Salameh TS, Bullock KM, Hujoel IA et al (2015) Central nervous system delivery of intranasal insulin: mechanisms of uptake and effects on cognition. J Alzheimers Dis 47:715–728
    • (2015) J Alzheimers Dis , vol.47 , pp. 715-728
    • Salameh, T.S.1    Bullock, K.M.2    Hujoel, I.A.3
  • 40
    • 0021986560 scopus 로고
    • Genetically obese Zucker rats have abnormally low brain insulin content
    • Baskin DG, Stein LJ, Ikeda H et al (1985) Genetically obese Zucker rats have abnormally low brain insulin content. Life Sci 36:627–633
    • (1985) Life Sci , vol.36 , pp. 627-633
    • Baskin, D.G.1    Stein, L.J.2    Ikeda, H.3
  • 41
    • 1842734659 scopus 로고    scopus 로고
    • The source of cerebral insulin
    • Banks WA (2004) The source of cerebral insulin. Eur J Pharmacol 490:5–1242
    • (2004) Eur J Pharmacol , vol.490 , pp. 5-1242
    • Banks, W.A.1
  • 43
    • 0020513077 scopus 로고
    • Insulin- and glucagonlike peptides in the brain
    • Dorn A, Bernstein HG, Rinne A et al (1983) Insulin- and glucagonlike peptides in the brain. Anat Rec 207:69–77
    • (1983) Anat Rec , vol.207 , pp. 69-77
    • Dorn, A.1    Bernstein, H.G.2    Rinne, A.3
  • 44
    • 0021088485 scopus 로고
    • Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)
    • Dorn A, Rinne A, Bernstein HG et al (1983) Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay). J Hirnforsch 24:495–499
    • (1983) J Hirnforsch , vol.24 , pp. 495-499
    • Dorn, A.1    Rinne, A.2    Bernstein, H.G.3
  • 45
    • 82955181280 scopus 로고    scopus 로고
    • Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb
    • Kuwabara T, Kagalwala MN, Onuma Y et al (2011) Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med 3:742–754
    • (2011) EMBO Mol Med , vol.3 , pp. 742-754
    • Kuwabara, T.1    Kagalwala, M.N.2    Onuma, Y.3
  • 46
    • 0021264577 scopus 로고
    • Proinsulin-like material in mouse foetal brain cell cultures
    • Birch NP, Christie DL, Renwick AG (1984) Proinsulin-like material in mouse foetal brain cell cultures. FEBS Lett 168:299–302
    • (1984) FEBS Lett , vol.168 , pp. 299-302
    • Birch, N.P.1    Christie, D.L.2    Renwick, A.G.3
  • 47
    • 0027486662 scopus 로고
    • Insulin II gene expression in rat central nervous system
    • Devaskar SU, Singh BS, Carnaghi LR et al (1993) Insulin II gene expression in rat central nervous system. Regul Pept 48:55–63
    • (1993) Regul Pept , vol.48 , pp. 55-63
    • Devaskar, S.U.1    Singh, B.S.2    Carnaghi, L.R.3
  • 48
    • 0028310417 scopus 로고
    • Insulin gene expression and insulin synthesis in mammalian neuronal cells
    • Devaskar SU, Giddings SJ, Rajakumar PA et al (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 269:8445–8454
    • (1994) J Biol Chem , vol.269 , pp. 8445-8454
    • Devaskar, S.U.1    Giddings, S.J.2    Rajakumar, P.A.3
  • 49
    • 0027398295 scopus 로고
    • Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo
    • Deltour L, Leduque P, Blume N et al (1993) Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc Natl Acad Sci U S A 90:527–531
    • (1993) Proc Natl Acad Sci U S A , vol.90 , pp. 527-531
    • Deltour, L.1    Leduque, P.2    Blume, N.3
  • 50
    • 84870537777 scopus 로고    scopus 로고
    • Hyperinsulinemia drives diet-induced obesity independently of brain insulin production
    • Mehran AE, Templeman NM, Brigidi GS et al (2012) Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 16:723–737
    • (2012) Cell Metab , vol.16 , pp. 723-737
    • Mehran, A.E.1    Templeman, N.M.2    Brigidi, G.S.3
  • 51
    • 84879033112 scopus 로고    scopus 로고
    • Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording
    • Faragó N, Kocsis ÁK, Lovas S et al (2013) Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording. Biotechniques 54:327–336
    • (2013) Biotechniques , vol.54 , pp. 327-336
    • Faragó, N.1    Kocsis, Á.K.2    Lovas, S.3
  • 52
    • 84892769988 scopus 로고    scopus 로고
    • GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex
    • Molnár G, Faragó N, Kocsis ÁK et al (2014) GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex. J Neurosci 34:1133–1137
    • (2014) J Neurosci , vol.34 , pp. 1133-1137
    • Molnár, G.1    Faragó, N.2    Kocsis, Á.K.3
  • 53
    • 0032557956 scopus 로고    scopus 로고
    • GLUT4 glucose transporter expression in rodent brain: effect of diabetes
    • Vannucci SJ, Koehler-Stec EM, Li K et al (1998) GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res 797:1–11
    • (1998) Brain Res , vol.797 , pp. 1-11
    • Vannucci, S.J.1    Koehler-Stec, E.M.2    Li, K.3
  • 54
    • 28444495045 scopus 로고    scopus 로고
    • Neuronal insulin signal transduction mechanisms in diabetes phenotypes
    • Reagan LP (2005) Neuronal insulin signal transduction mechanisms in diabetes phenotypes. Neurobiol Aging 26(Suppl 1):56–59
    • (2005) Neurobiol Aging , vol.26 , pp. 56-59
    • Reagan, L.P.1
  • 55
    • 79551607887 scopus 로고    scopus 로고
    • Effects of insulin on brain glucose metabolism in impaired glucose tolerance
    • Hirvonen J, Virtanen KA, Nummenmaa L et al (2011) Effects of insulin on brain glucose metabolism in impaired glucose tolerance. Diabetes 60:443–447
    • (2011) Diabetes , vol.60 , pp. 443-447
    • Hirvonen, J.1    Virtanen, K.A.2    Nummenmaa, L.3
  • 56
    • 78651274000 scopus 로고    scopus 로고
    • Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes
    • Baker LD, Cross DJ, Minoshima S et al (2011) Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 68:51–57
    • (2011) Arch Neurol , vol.68 , pp. 51-57
    • Baker, L.D.1    Cross, D.J.2    Minoshima, S.3
  • 57
    • 0036895563 scopus 로고    scopus 로고
    • The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study
    • Bingham EM, Hopkins D, Smith D et al (2002) The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes 51:3384–3390
    • (2002) Diabetes , vol.51 , pp. 3384-3390
    • Bingham, E.M.1    Hopkins, D.2    Smith, D.3
  • 58
    • 84893451911 scopus 로고    scopus 로고
    • Human hippocampal energy metabolism is impaired during cognitive activity in a lipid infusion model of insulin resistance
    • Emmanuel Y, Cochlin LE, Tyler DJ et al (2013) Human hippocampal energy metabolism is impaired during cognitive activity in a lipid infusion model of insulin resistance. Brain Behav 3:134–144
    • (2013) Brain Behav , vol.3 , pp. 134-144
    • Emmanuel, Y.1    Cochlin, L.E.2    Tyler, D.J.3
  • 59
    • 77952545095 scopus 로고    scopus 로고
    • Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance
    • McNay EC, Ong CT, McCrimmon RJ et al (2010) Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 93:546–553
    • (2010) Neurobiol Learn Mem , vol.93 , pp. 546-553
    • McNay, E.C.1    Ong, C.T.2    McCrimmon, R.J.3
  • 60
    • 0034707612 scopus 로고    scopus 로고
    • Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group
    • Gregg EW, Yaffe K, Cauley JA et al (2000) Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Arch Intern Med 160:174–180
    • (2000) Arch Intern Med , vol.160 , pp. 174-180
    • Gregg, E.W.1    Yaffe, K.2    Cauley, J.A.3
  • 61
    • 0030873815 scopus 로고    scopus 로고
    • NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study
    • Elias PK, Elias MF, D’Agostino RB et al (1997) NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study. Diabetes Care 20:1388–1395
    • (1997) Diabetes Care , vol.20 , pp. 1388-1395
    • Elias, P.K.1    Elias, M.F.2    D’Agostino, R.B.3
  • 62
    • 1242316296 scopus 로고    scopus 로고
    • Insulin and neurodegenerative disease: shared and specific mechanisms
    • Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3:169–178
    • (2004) Lancet Neurol , vol.3 , pp. 169-178
    • Craft, S.1    Watson, G.S.2
  • 63
    • 77949465525 scopus 로고    scopus 로고
    • Insulin receptor signaling in the development of neuronal structure and function
    • Chiu S-L, Cline HT (2010) Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5:7
    • (2010) Neural Dev , vol.5 , pp. 7
    • Chiu, S.-L.1    Cline, H.T.2
  • 64
    • 0033696622 scopus 로고    scopus 로고
    • Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD
    • Beattie EC, Carroll RC, Yu X et al (2000) Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 3:1291–1300
    • (2000) Nat Neurosci , vol.3 , pp. 1291-1300
    • Beattie, E.C.1    Carroll, R.C.2    Yu, X.3
  • 65
    • 0033695663 scopus 로고    scopus 로고
    • Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization
    • Lin JW, Ju W, Foster K et al (2000) Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat Neurosci 3:1282–1290
    • (2000) Nat Neurosci , vol.3 , pp. 1282-1290
    • Lin, J.W.1    Ju, W.2    Foster, K.3
  • 66
    • 23844470857 scopus 로고    scopus 로고
    • Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner
    • van der Heide LP, Kamal A, Artola A et al (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 94:1158–1166
    • (2005) J Neurochem , vol.94 , pp. 1158-1166
    • van der Heide, L.P.1    Kamal, A.2    Artola, A.3
  • 67
    • 0030800192 scopus 로고    scopus 로고
    • Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin
    • Wan Q, Xiong ZG, Man HY et al (1997) Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388:686–690
    • (1997) Nature , vol.388 , pp. 686-690
    • Wan, Q.1    Xiong, Z.G.2    Man, H.Y.3
  • 68
    • 79251552543 scopus 로고    scopus 로고
    • Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current
    • Jin Z, Jin Y, Kumar-Mendu S et al (2011) Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current. PLoS One 6:e16188
    • (2011) PLoS One , vol.e16188 , pp. 6
    • Jin, Z.1    Jin, Y.2    Kumar-Mendu, S.3
  • 69
    • 0037459320 scopus 로고    scopus 로고
    • Identified sources and targets of slow inhibition in the neocortex
    • Tamas G, Lorincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299:1902–1905
    • (2003) Science , vol.299 , pp. 1902-1905
    • Tamas, G.1    Lorincz, A.2    Simon, A.3    Szabadics, J.4
  • 70
    • 70350686715 scopus 로고    scopus 로고
    • Regulation of cortical microcircuits by unitary GABA-mediated volume transmission
    • Olah S, Fule M, Komlosi G et al (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1281
    • (2009) Nature , vol.461 , pp. 1278-1281
    • Olah, S.1    Fule, M.2    Komlosi, G.3
  • 71
    • 0033944152 scopus 로고    scopus 로고
    • Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats
    • Spanswick D, Smith MA, Mirshamsi S et al (2000) Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 3:757–758
    • (2000) Nat Neurosci , vol.3 , pp. 757-758
    • Spanswick, D.1    Smith, M.A.2    Mirshamsi, S.3
  • 72
    • 0035863224 scopus 로고    scopus 로고
    • Intrahippocampal infusions of K-ATP channel modulators influence spontaneous alternation performance: relationships to acetylcholine release in the hippocampus
    • Stefani MR, Gold PE (2001) Intrahippocampal infusions of K-ATP channel modulators influence spontaneous alternation performance: relationships to acetylcholine release in the hippocampus. J Neurosci 21:609–614
    • (2001) J Neurosci , vol.21 , pp. 609-614
    • Stefani, M.R.1    Gold, P.E.2
  • 73
    • 34248198396 scopus 로고    scopus 로고
    • Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus
    • Piroli GG, Grillo CA, Reznikov LR et al (2007) Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology 85:71–80
    • (2007) Neuroendocrinology , vol.85 , pp. 71-80
    • Piroli, G.G.1    Grillo, C.A.2    Reznikov, L.R.3
  • 74
    • 69549128161 scopus 로고    scopus 로고
    • Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system
    • Hamilton A, Hölscher C (2009) Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 20:1161–1166
    • (2009) Neuroreport , vol.20 , pp. 1161-1166
    • Hamilton, A.1    Hölscher, C.2
  • 75
    • 84920059626 scopus 로고    scopus 로고
    • GLP-1 and exendin-4 transiently enhance GABAA receptor-mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons
    • Korol SV, Jin Z, Babateen O, Birnir B (2015) GLP-1 and exendin-4 transiently enhance GABAA receptor-mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. Diabetes 64:79–89
    • (2015) Diabetes , vol.64 , pp. 79-89
    • Korol, S.V.1    Jin, Z.2    Babateen, O.3    Birnir, B.4
  • 76
    • 35748957503 scopus 로고    scopus 로고
    • The physiology of glucagon-like peptide 1
    • Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439
    • (2007) Physiol Rev , vol.87 , pp. 1409-1439
    • Holst, J.J.1
  • 77
    • 67651173077 scopus 로고    scopus 로고
    • Incretin-based therapies for type 2 diabetes mellitus
    • Lovshin JA, Drucker DJ (2009) Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 5:262–269
    • (2009) Nat Rev Endocrinol , vol.5 , pp. 262-269
    • Lovshin, J.A.1    Drucker, D.J.2
  • 78
    • 33845541048 scopus 로고    scopus 로고
    • The cerebral basis for impaired control of food intake in metabolic syndrome
    • Anthony K, Reed LJ, Dunn JT et al (2006) The cerebral basis for impaired control of food intake in metabolic syndrome. Diabetes 55:2986–2992
    • (2006) Diabetes , vol.55 , pp. 2986-2992
    • Anthony, K.1    Reed, L.J.2    Dunn, J.T.3
  • 79
    • 84947614766 scopus 로고    scopus 로고
    • Impaired insulin action in the human brain: causes and metabolic consequences
    • Heni M, Kullmann S, Preissl H et al (2015) Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol 11:701–711
    • (2015) Nat Rev Endocrinol , vol.11 , pp. 701-711
    • Heni, M.1    Kullmann, S.2    Preissl, H.3
  • 80
    • 84903173931 scopus 로고    scopus 로고
    • Insulin action in brain regulates systemic metabolism and brain function
    • Kleinridders A, Ferris HA, Cai W, Kahn CR (2014) Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63:2232–2243
    • (2014) Diabetes , vol.63 , pp. 2232-2243
    • Kleinridders, A.1    Ferris, H.A.2    Cai, W.3    Kahn, C.R.4
  • 81
    • 84886592674 scopus 로고    scopus 로고
    • Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease
    • McClean PL, Hölscher C (2014) Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology 76:57–67
    • (2014) Neuropharmacology , vol.76 , pp. 57-67
    • McClean, P.L.1    Hölscher, C.2
  • 82
    • 84873306844 scopus 로고    scopus 로고
    • Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration
    • Duarte AI, Candeias E, Correia SC et al (2013) Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta 1832:527–541
    • (2013) Biochim Biophys Acta , vol.1832 , pp. 527-541
    • Duarte, A.I.1    Candeias, E.2    Correia, S.C.3
  • 83
    • 82955181333 scopus 로고    scopus 로고
    • Neural stem cells for diabetes cell-based therapy
    • Basak O, Clevers H (2011) Neural stem cells for diabetes cell-based therapy. EMBO Mol Med 3:698–700
    • (2011) EMBO Mol Med , vol.3 , pp. 698-700
    • Basak, O.1    Clevers, H.2
  • 84
    • 84861860443 scopus 로고    scopus 로고
    • Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications
    • Kuwabara T, Asashima M (2012) Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications. J Mol Cell Biol 4:1–2
    • (2012) J Mol Cell Biol , vol.4 , pp. 1-2
    • Kuwabara, T.1    Asashima, M.2
  • 85
    • 0033854826 scopus 로고    scopus 로고
    • Isolation and characterization of neural stem cells from the adult human olfactory bulb
    • Pagano SF, Impagnatiello F, Girelli M et al (2000) Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells 18:295–300
    • (2000) Stem Cells , vol.18 , pp. 295-300
    • Pagano, S.F.1    Impagnatiello, F.2    Girelli, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.