메뉴 건너뛰기




Volumn 2016, Issue , 2016, Pages

Feature selection has a large impact on one-class classification accuracy for micrornas in plants

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84969820470     PISSN: 16878027     EISSN: 16878035     Source Type: Journal    
DOI: 10.1155/2016/5670851     Document Type: Article
Times cited : (17)

References (42)
  • 1
    • 0027751663 scopus 로고
    • The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • R. C. Lee, R. L. Feinbaum, and V. Ambros, "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, " Cell, vol. 75, no. 5, pp. 843-854, 1993.
    • (1993) Cell , vol.75 , Issue.5 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 4
    • 35348996554 scopus 로고    scopus 로고
    • Specialization and evolution of endogenous small RNA pathways
    • E. J. Chapman and J. C. Carrington, "Specialization and evolution of endogenous small RNA pathways, " Nature Reviews Genetics, vol. 8, no. 11, pp. 884-896, 2007.
    • (2007) Nature Reviews Genetics , vol.8 , Issue.11 , pp. 884-896
    • Chapman, E.J.1    Carrington, J.C.2
  • 5
    • 84918542258 scopus 로고    scopus 로고
    • EPO mediates neurotrophic, neuroprotective, anti-oxidant, and anti-apoptotic effects via downregulation of miR-451 and miR-885-5p in SHSY5Y neuron-like cells
    • article 475
    • B. Alural, G. A. Duran, K. U. Tufekci et al. , "EPO mediates neurotrophic, neuroprotective, anti-oxidant, and anti-apoptotic effects via downregulation of miR-451 and miR-885-5p in SHSY5Y neuron-like cells, " Frontiers in Immunology, vol. 5, article 475, 2014.
    • (2014) Frontiers in Immunology , vol.5
    • Alural, B.1    Duran, G.A.2    Tufekci, K.U.3
  • 6
    • 84930665355 scopus 로고    scopus 로고
    • Lithium protects against paraquat neurotoxicity by NRF2 activation and miR-34a inhibition in SH-SY5Y cells
    • article 209
    • B. Alural, A. Ozerdem, J. Allmer, K. Genc, and S. Genc, "Lithium protects against paraquat neurotoxicity by NRF2 activation and miR-34a inhibition in SH-SY5Y cells, " Frontiers in Cellular Neuroscience, vol. 9, article 209, 2015.
    • (2015) Frontiers in Cellular Neuroscience , vol.9
    • Alural, B.1    Ozerdem, A.2    Allmer, J.3    Genc, K.4    Genc, S.5
  • 7
    • 75549083571 scopus 로고    scopus 로고
    • PMRD: Plant microRNA database
    • Article ID gkp818
    • Z. Zhang, J. Yu, D. Li et al. , "PMRD: plant microRNA database, " Nucleic Acids Research, vol. 38, no. 1, Article ID gkp818, pp. D806-D813, 2009.
    • (2009) Nucleic Acids Research , vol.38 , Issue.1 , pp. D806-D813
    • Zhang, Z.1    Yu, J.2    Li, D.3
  • 9
    • 78651266827 scopus 로고    scopus 로고
    • MiRTarBase: A database curates experimentally validated microRNA-target interactions
    • S.-D. Hsu, F.-M. Lin, W.-Y. Wu et al. , "MiRTarBase: a database curates experimentally validated microRNA-target interactions, " Nucleic Acids Research, vol. 39, no. 1, pp. D163-D169, 2011.
    • (2011) Nucleic Acids Research , vol.39 , Issue.1 , pp. D163-D169
    • Hsu, S.-D.1    Lin, F.-M.2    Wu, W.-Y.3
  • 10
    • 43949125230 scopus 로고    scopus 로고
    • Learning from positive examples when the negative class is undetermined-microRNA gene identification
    • article 2
    • M. Yousef, S. Jung, L. C. Showe, and M. K. Showe, "Learning from positive examples when the negative class is undetermined-microRNA gene identification, " Algorithms for Molecular Biology, vol. 3, article 2, 2008.
    • (2008) Algorithms for Molecular Biology , vol.3
    • Yousef, M.1    Jung, S.2    Showe, L.C.3    Showe, M.K.4
  • 11
    • 78650816392 scopus 로고    scopus 로고
    • MiRenSVM: Towards better prediction of microRNA precursors using an ensemble SVM classifier withmulti-loop features
    • J. Ding, S. Zhou, and J. Guan, "MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier withmulti-loop features, " BMC Bioinformatics, vol. 11, supplement 11, p. S11, 2010.
    • (2010) BMC Bioinformatics , vol.11 , pp. S11
    • Ding, J.1    Zhou, S.2    Guan, J.3
  • 12
    • 79958033251 scopus 로고    scopus 로고
    • MiRPara: A SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences
    • article 107
    • Y. Wu, B. Wei, H. Liu, T. Li, and S. Rayner, "MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences, " BMC Bioinformatics, vol. 12, no. 1, article 107, 2011.
    • (2011) BMC Bioinformatics , vol.12 , Issue.1
    • Wu, Y.1    Wei, B.2    Liu, H.3    Li, T.4    Rayner, S.5
  • 13
    • 84859743784 scopus 로고    scopus 로고
    • Defining and providing robust controls for microRNA prediction
    • W. Ritchie, D. Gao, and J. E. J. Rasko, "Defining and providing robust controls for microRNA prediction, " Bioinformatics, vol. 28, no. 8, pp. 1058-1061, 2012.
    • (2012) Bioinformatics , vol.28 , Issue.8 , pp. 1058-1061
    • Ritchie, W.1    Gao, D.2    Rasko, J.E.J.3
  • 14
  • 15
    • 84891760538 scopus 로고    scopus 로고
    • Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins?
    • article 215
    • M. D. Sacar, H. Hamzeiy, and J. Allmer, "Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins?" Journal of Integrative Bioinformatics, vol. 10, no. 2, article 215, 2013.
    • (2013) Journal of Integrative Bioinformatics , vol.10 , Issue.2
    • Sacar, M.D.1    Hamzeiy, H.2    Allmer, J.3
  • 16
    • 78149465518 scopus 로고    scopus 로고
    • A comparison study between one-class and two-class machine learning for MicroRNA target detection
    • M. Yousef, N. Najami, and W. Khalifav, "A comparison study between one-class and two-class machine learning for MicroRNA target detection, " Journal of Biomedical Science and Engineering, vol. 3, no. 3, pp. 247-252, 2010.
    • (2010) Journal of Biomedical Science and Engineering , vol.3 , Issue.3 , pp. 247-252
    • Yousef, M.1    Najami, N.2    Khalifav, W.3
  • 17
    • 84934444923 scopus 로고    scopus 로고
    • Machine learning methods for microRNA gene prediction
    • M. D. Sacar and J. Allmer, "Machine learning methods for microRNA gene prediction, "Methods inMolecular Biology, vol. 1107, pp. 177-187, 2014.
    • (2014) Methods InMolecular Biology , vol.1107 , pp. 177-187
    • Sacar, M.D.1    Allmer, J.2
  • 19
    • 34447309058 scopus 로고    scopus 로고
    • De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures
    • K. L. S. Ng and S. K. Mishra, "De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures, " Bioinformatics, vol. 23, no. 11, pp. 1321-1330, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.11 , pp. 1321-1330
    • Ng, K.L.S.1    Mishra, S.K.2
  • 22
    • 33847410597 scopus 로고    scopus 로고
    • One-class document classification via Neural Networks
    • L. Manevitz and M. Yousef, "One-class document classification via Neural Networks, " Neurocomputing, vol. 70, no. 7-9, pp. 1466-1481, 2007.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1466-1481
    • Manevitz, L.1    Yousef, M.2
  • 24
    • 84892650223 scopus 로고    scopus 로고
    • Data mining for microrna gene prediction: On the impact of class imbalance and feature number for microrna gene prediction
    • IEEE, Ankara, Turkey, September
    • M. D. Sacar and J. Allmer, "Data mining for microrna gene prediction: on the impact of class imbalance and feature number for microrna gene prediction, " in Proceedings of the 8th International Symposium on Health Informatics and Bioinformatics (HIBIT 13), pp. 1-6, IEEE, Ankara, Turkey, September 2013.
    • (2013) Proceedings of the 8th International Symposium on Health Informatics and Bioinformatics (HIBIT 13) , pp. 1-6
    • Sacar, M.D.1    Allmer, J.2
  • 25
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • E. Amaldi and V. Kann, "On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems, " Theoretical Computer Science, vol. 209, no. 1-2, pp. 237-260, 1998.
    • (1998) Theoretical Computer Science , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 27
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines, " Machine Learning, vol. 46, no. 1-3, pp. 389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 30
    • 81155131543 scopus 로고    scopus 로고
    • Maturepred: Efficient identification of microRNAs within novel plant PremiRNAs
    • Article ID e27422
    • P. Xuan, M. Guo, Y. Huang, W. Li, and Y. Huang, "Maturepred: efficient identification of microRNAs within novel plant PremiRNAs, " PLoS ONE, vol. 6, no. 11, Article ID e27422, 2011.
    • (2011) PLoS ONE , vol.6 , Issue.11
    • Xuan, P.1    Guo, M.2    Huang, Y.3    Li, W.4    Huang, Y.5
  • 32
    • 79955779744 scopus 로고    scopus 로고
    • PlantMiRNAPred: Efficient classification of real and pseudo plant pre-miRNAs
    • P. Xuan, M. Guo, X. Liu, Y. Huang, W. Li, and Y. Huang, "PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs, " Bioinformatics, vol. 27, no. 10, pp. 1368-1376, 2011.
    • (2011) Bioinformatics , vol.27 , Issue.10 , pp. 1368-1376
    • Xuan, P.1    Guo, M.2    Liu, X.3    Huang, Y.4    Li, W.5    Huang, Y.6
  • 33
    • 85006408283 scopus 로고    scopus 로고
    • Sequence motif-based one-class classifiers can achieve comparable accuracy to twoclass learners forplantmicroRNAdetection
    • M. Yousef, J. Allmer, and W. Khalifa, "Sequence motif-based one-class classifiers can achieve comparable accuracy to twoclass learners forplantmicroRNAdetection, " Journal of Biomedical Science and Engineering, vol. 8, no. 10, pp. 684-694, 2015.
    • (2015) Journal of Biomedical Science and Engineering , vol.8 , Issue.10 , pp. 684-694
    • Yousef, M.1    Allmer, J.2    Khalifa, W.3
  • 34
    • 84922563717 scopus 로고    scopus 로고
    • Computational prediction of MicroRNAs from toxoplasma gondii potentially regulating the hosts gene expression
    • M. D. Sacar, C. Bagci, and J. Allmer, "Computational prediction of MicroRNAs from toxoplasma gondii potentially regulating the hosts gene expression, " Genomics, Proteomics and Bioinformatics, vol. 12, no. 5, pp. 228-238, 2014.
    • (2014) Genomics, Proteomics and Bioinformatics , vol.12 , Issue.5 , pp. 228-238
    • Sacar, M.D.1    Bagci, C.2    Allmer, J.3
  • 36
    • 84879557098 scopus 로고    scopus 로고
    • KNIME: The Konstanz Information Miner
    • C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker, Eds. , Studies inClassification, Data Analysis, and Knowledge Organization
    • M. R. Berthold, N. Cebron, F. Dill et al. , "KNIME: the Konstanz Information Miner, " in Data Analysis, Machine Learning and Applications, C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker, Eds. , Studies inClassification, Data Analysis, and Knowledge Organization, pp. 319-326, 2008.
    • (2008) Data Analysis, Machine Learning and Applications , pp. 319-326
    • Berthold, M.R.1    Cebron, N.2    Dill, F.3
  • 37
    • 79960004119 scopus 로고    scopus 로고
    • Interactive Tree of Life v2: Online annotation and display of phylogenetic treesmade easy
    • I. Letunic and P. Bork, "Interactive Tree of Life v2: online annotation and display of phylogenetic treesmade easy, " Nucleic Acids Research, vol. 39, supplement 2, pp. W475-W478, 2011.
    • (2011) Nucleic Acids Research , vol.39 , pp. W475-W478
    • Letunic, I.1    Bork, P.2
  • 38
    • 34547596338 scopus 로고    scopus 로고
    • MiPred: Classification of real and pseudo microRNA precursors using
    • random forest prediction model with combined features
    • P. Jiang, H. Wu, W. Wang, W. Ma, X. Sun, and Z. Lu, "MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features, " Nucleic Acids Research, vol. 35, no. 2, pp. W339-W344, 2007.
    • (2007) Nucleic Acids Research , vol.35 , Issue.2 , pp. W339-W344
    • Jiang, P.1    Wu, H.2    Wang, W.3    Ma, W.4    Sun, X.5    Lu, Z.6
  • 39
    • 64549116289 scopus 로고    scopus 로고
    • MicroPred: Effective classification of pre-miRNAs for human miRNA gene prediction
    • R. Batuwita and V. Palade, "microPred: effective classification of pre-miRNAs for human miRNA gene prediction, " Bioinformatics, vol. 25, no. 8, pp. 989-995, 2009.
    • (2009) Bioinformatics , vol.25 , Issue.8 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 40
    • 84934436006 scopus 로고    scopus 로고
    • Computational and bioinformatics methods for microRNA gene prediction
    • J. Allmer, "Computational and bioinformatics methods for microRNA gene prediction, "Methods inMolecular Biology, vol. 1107, pp. 157-175, 2014.
    • (2014) Methods InMolecular Biology , vol.1107 , pp. 157-175
    • Allmer, J.1
  • 41
    • 84948719605 scopus 로고    scopus 로고
    • A novel features ranking metric with application to scalable visual and bioinformatics data classification
    • Q. Zou, J. Zeng, L. Cao, and R. Ji, "A novel features ranking metric with application to scalable visual and bioinformatics data classification, " Neurocomputing, vol. 173, part 2, pp. 346-354, 2016.
    • (2016) Neurocomputing , vol.173 , pp. 346-354
    • Zou, Q.1    Zeng, J.2    Cao, L.3    Ji, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.