메뉴 건너뛰기




Volumn , Issue , 2014, Pages 24-1-24-22

Overview and benchmarking of motion detection methods

Author keywords

[No Author keywords available]

Indexed keywords

MOTION DETECTION; MOVING OBJECTS; PRE-PROCESSING STEP;

EID: 84969781706     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b17223     Document Type: Chapter
Times cited : (24)

References (101)
  • 1
    • 0000676489 scopus 로고
    • Bayesian algorithms for adaptive change detection in image sequences using Markov random fields
    • T. Aach and A. Kaup. Bayesian algorithms for adaptive change detection in image sequences using Markov random fields. Signal Process., Image Commun., 7:147-160, 1995.
    • (1995) Signal Process., Image Commun , vol.7 , pp. 147-160
    • Aach, T.1    Kaup, A.2
  • 2
    • 78149489170 scopus 로고    scopus 로고
    • Finite general Gaussian mixture modelling and application to image and video foreground segmentation
    • M.S. Allili, N. Bouguila, and D. Ziou. Finite general Gaussian mixture modelling and application to image and video foreground segmentation. J. of Elec. Imaging, 17:1-23, 2008.
    • (2008) J. of Elec. Imaging , vol.17 , pp. 1-23
    • Allili, M.S.1    Bouguila, N.2    Ziou, D.3
  • 3
    • 79957497122 scopus 로고    scopus 로고
    • ViBe: A universal background subtraction algorithm for video sequences
    • June
    • O. Barnich and M. Van Droogenbroeck. ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image Process., 20(6):1709-1724, June 2011.
    • (2011) IEEE Trans. Image Process , vol.20 , Issue.6 , pp. 1709-1724
    • Barnich, O.1    van Droogenbroeck, M.2
  • 8
    • 0035279879 scopus 로고    scopus 로고
    • The recognition of human movement using temporal templates
    • A. F. Bobick and J. W. Davis. The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Machine Intell., 23(3):257-267, 2001.
    • (2001) IEEE Trans. Pattern Anal. Machine Intell , vol.23 , Issue.3 , pp. 257-267
    • Bobick, A.F.1    Davis, J.W.2
  • 9
    • 80053143044 scopus 로고    scopus 로고
    • Recent advanced statistical background modeling for foreground detection: A systematic survey
    • T. Bouwmans. Recent advanced statistical background modeling for foreground detection: A systematic survey. Recent Patents on Computer Science, 4(3), 2011.
    • (2011) Recent Patents on Computer Science , vol.4 , Issue.3
    • Bouwmans, T.1
  • 10
    • 70449580219 scopus 로고    scopus 로고
    • Background modeling using mixture of Gaussians for foreground detection: A survey
    • T. Bouwmans, F. El Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 1(3):219-237, 2008.
    • (2008) Recent Patents on Computer Science , vol.1 , Issue.3 , pp. 219-237
    • Bouwmans, T.1    El Baf, F.2    Vachon, B.3
  • 13
    • 33847003281 scopus 로고    scopus 로고
    • Real-time adaptive background segmentation
    • D. Butler, S. Sridharan, and M. Bove. Real-time adaptive background segmentation. In ICME, pages 341-344, 2003.
    • (2003) ICME , pp. 341-344
    • Butler, D.1    Sridharan, S.2    Bove, M.3
  • 14
    • 84863038003 scopus 로고    scopus 로고
    • A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction
    • February
    • S. Chen, J. Zhang, Y. Li, and J. Zhang. A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction. IEEE Transactions on Industrial Informatics, 8(1):118-127, February 2012.
    • (2012) IEEE Transactions on Industrial Informatics , vol.8 , Issue.1 , pp. 118-127
    • Chen, S.1    Zhang, J.2    Li, Y.3    Zhang, J.4
  • 15
    • 34249105516 scopus 로고    scopus 로고
    • Efficient hierarchical method for background subtraction
    • Y. Chen, C. Chen, C. Huang, and Y. Hung. Efficient hierarchical method for background subtraction. Pattern Recognition, 40(10):2706-2715, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.10 , pp. 2706-2715
    • Chen, Y.1    Chen, C.2    Huang, C.3    Hung, Y.4
  • 18
    • 85013613626 scopus 로고    scopus 로고
    • Illumination invariant foreground detection using multi-subspace learning
    • Y. Dong, T.X. Han, and G.N. Desouza. Illumination invariant foreground detection using multi-subspace learning. Int. J. Know.-Based Intell. Eng. Syst., 14(1):31-41, 2010.
    • (2010) Int. J. Know.-Based Intell. Eng. Syst , vol.14 , Issue.1 , pp. 31-41
    • Dong, Y.1    Han, T.X.2    Desouza, G.N.3
  • 19
    • 33751584745 scopus 로고    scopus 로고
    • The combining classifier: To train or not to train?
    • Quebec City, Canada, August
    • R. Duin. The combining classifier: to train or not to train? In IEEE International Conference on Pattern Recognition (ICPR), volume 2, pages 765-770, Quebec City, Canada, August 2002.
    • (2002) IEEE International Conference on Pattern Recognition (ICPR) , vol.2 , pp. 765-770
    • Duin, R.1
  • 21
    • 33645307063 scopus 로고    scopus 로고
    • Background and foreground modeling using nonparametric kernel density for visual surveillance
    • A. Elgammal, R. Duraiswami, D. Harwood, and L.S. Davis. Background and foreground modeling using nonparametric kernel density for visual surveillance. Proc. IEEE, 90:1151-1163, 2002.
    • (2002) Proc. IEEE , vol.90 , pp. 1151-1163
    • Elgammal, A.1    Duraiswami, R.2    Harwood, D.3    Davis, L.S.4
  • 30
    • 84859175807 scopus 로고    scopus 로고
    • Density-based multifeature background subtraction with support vector machine
    • B. Han and L. Davis. Density-based multifeature background subtraction with support vector machine. IEEE Trans. Pattern Anal. Machine Intell., 34(5), 2012.
    • (2012) IEEE Trans. Pattern Anal. Machine Intell , vol.34 , Issue.5
    • Han, B.1    Davis, L.2
  • 31
    • 38149095107 scopus 로고    scopus 로고
    • Real-time foreground-background segmentation using adaptive support vector machine algorithm
    • Z. Hao, W. Wen, Z. Liu, and X. Yang. Real-time foreground-background segmentation using adaptive support vector machine algorithm. In Proc of ICANN, pages 603-610, 2007.
    • (2007) Proc of ICANN , pp. 603-610
    • Hao, Z.1    Wen, W.2    Liu, Z.3    Yang, X.4
  • 32
    • 84865029463 scopus 로고    scopus 로고
    • Background segmentation with feedback: The pixel-based adaptive segmenter
    • M. Hofmann. Background segmentation with feedback: The pixel-based adaptive segmenter. In IEEE Workshop on Change Detection, 2012.
    • (2012) IEEE Workshop on Change Detection
    • Hofmann, M.1
  • 33
    • 34247333309 scopus 로고    scopus 로고
    • Region-level motion-based background modeling and subtraction using MRFs
    • May
    • S.-S. Huang, L.-C. Fu, and P.-Y. Hsiao. Region-level motion-based background modeling and subtraction using MRFs. IEEE Transactions on Image Processing, 16(5):1446-1456, May 2007.
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.5 , pp. 1446-1456
    • Huang, S.-S.1    Fu, L.-C.2    Hsiao, P.-Y.3
  • 34
    • 84964316524 scopus 로고    scopus 로고
    • A hierarchical approach to robust background subtraction using color and gradient information
    • December
    • O. Javed, K. Shafique, and M. Shah. A hierarchical approach to robust background subtraction using color and gradient information. In Workshop on Motion and Video Computing, pages 22-27, December 2002.
    • (2002) Workshop on Motion and Video Computing , pp. 22-27
    • Javed, O.1    Shafique, K.2    Shah, M.3
  • 39
    • 0001408591 scopus 로고
    • Moving object recognition using an adaptive background memory
    • In Capellini, editor, Amsterdam, The Netherlands, Elsevier
    • K. Karman and A. von Brandt. Moving object recognition using an adaptive background memory. In Capellini, editor, Time-varying Image Processing and Moving Object Recognition, volume 2, pages 297-307, Amsterdam, The Netherlands, 1990. Elsevier.
    • (1990) Time-Varying Image Processing and Moving Object Recognition , vol.2 , pp. 297-307
    • Karman, K.1    Von Brandt, A.2
  • 40
    • 38149078188 scopus 로고    scopus 로고
    • Robust foreground extraction technique using Gaussian family model and multiple thresholds
    • H. Kim, R. Sakamoto, I. Kitahara, T. Toriyama, and K. Kogure. Robust foreground extraction technique using Gaussian family model and multiple thresholds. In ACCV, pages 758-768, 2007.
    • (2007) ACCV , pp. 758-768
    • Kim, H.1    Sakamoto, R.2    Kitahara, I.3    Toriyama, T.4    Kogure, K.5
  • 41
    • 21644463503 scopus 로고    scopus 로고
    • Real-time foreground-background segmentation using codebook model, real-time imaging
    • K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis. Real-time foreground-background segmentation using codebook model, real-time imaging. Real-Time Imaging, 11(3):172-185, 2005.
    • (2005) Real-Time Imaging , vol.11 , Issue.3 , pp. 172-185
    • Kim, K.1    Chalidabhongse, T.2    Harwood, D.3    Davis, L.4
  • 42
    • 85060427098 scopus 로고    scopus 로고
    • Novelty detection using growing neural gas for visuospatial memory
    • D. Kit, B. Sullivan, and D. Ballard. Novelty detection using growing neural gas for visuospatial memory. In IEEE IROS, 2011.
    • (2011) IEEE IROS
    • Kit, D.1    Sullivan, B.2    Ballard, D.3
  • 47
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex backgrounds for foreground object detection
    • L. Li, W. Huang, I. Y. Gu, and Q. Tian. Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process., 13(11):1459-1472, 2004.
    • (2004) IEEE Trans. Image Process , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.Y.3    Tian, Q.4
  • 48
    • 2442471723 scopus 로고    scopus 로고
    • On incremental and robust subspace learning
    • Y. Li. On incremental and robust subspace learning. Pattern Recognit., 37:1509-1518, 2004.
    • (2004) Pattern Recognit , vol.37 , pp. 1509-1518
    • Li, Y.1
  • 49
    • 84872721949 scopus 로고    scopus 로고
    • Large area video surveillance system with handoff scheme among multiple cameras
    • C-C Lien, Y-M Jiang, and L-G Jang. Large area video surveillance system with handoff scheme among multiple cameras. In MVA, pages 463-466, 2009.
    • (2009) MVA , pp. 463-466
    • Lien, C.-C.1    Jiang, Y.-M.2    Jang, L.-G.3
  • 51
    • 78649728374 scopus 로고    scopus 로고
    • Fast image motion segmentation for surveillance applications
    • X. Lu and R. Manduchi. Fast image motion segmentation for surveillance applications. Image Vis. Comput., 29(2-3):104-116, 2011.
    • (2011) Image Vis. Comput , vol.29 , Issue.2-3 , pp. 104-116
    • Lu, X.1    Manduchi, R.2
  • 52
    • 45949086871 scopus 로고    scopus 로고
    • A self-organizing approach to background subtraction for visual surveillance applications
    • L. Maddalena and A. Petrosino. A self-organizing approach to background subtraction for visual surveillance applications. IEEE Transactions on Image Processing, 17(7):1168-1177, 2008.
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.7 , pp. 1168-1177
    • Maddalena, L.1    Petrosino, A.2
  • 55
    • 0029220539 scopus 로고
    • Segmentation and tracking of piglets in images
    • N. McFarlane and C. Schofield. Segmentation and tracking of piglets in images. Mach. vis. and appl., 8:187-193, 1995.
    • (1995) Mach. Vis. and Appl , vol.8 , pp. 187-193
    • McFarlane, N.1    Schofield, C.2
  • 57
    • 0032073537 scopus 로고    scopus 로고
    • Dense estimation and object-based segmentation of the optical flow with robust techniques
    • E. Memin and P. Perez. Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Process., 7(5):703-719, 1998.
    • (1998) IEEE Trans. Image Process , vol.7 , Issue.5 , pp. 703-719
    • Memin, E.1    Perez, P.2
  • 60
    • 33746649575 scopus 로고    scopus 로고
    • Performance evaluation of object detection algorithms for video surveillance
    • J. Nascimento and J. Marques. Performance evaluation of object detection algorithms for video surveillance. IEEE Trans. Multimedia, 8(8):761-774, 2006.
    • (2006) IEEE Trans. Multimedia , vol.8 , Issue.8 , pp. 761-774
    • Nascimento, J.1    Marques, J.2
  • 63
    • 84898448793 scopus 로고    scopus 로고
    • Background subtraction in videos using bayesian learning with motion information
    • S. K. Mitra P. Jaikumar, A. Singh. Background subtraction in videos using bayesian learning with motion information. In British Mach. Vis. Conf, pages 1-10, 2008.
    • (2008) British Mach. Vis. Conf , pp. 1-10
    • Jaikumar, S.K.M.P.1    Singh, A.2
  • 68
    • 35348860159 scopus 로고    scopus 로고
    • Multiplicative background-foreground estimation under uncontrolled illumination using intrinsic images
    • Breckenridge
    • F. Porikli. Multiplicative background-foreground estimation under uncontrolled illumination using intrinsic images. In Proc. of IEEE Motion Multi-Workshop, Breckenridge, 2005.
    • (2005) Proc. of IEEE Motion Multi-Workshop
    • Porikli, F.1
  • 74
    • 0042842434 scopus 로고    scopus 로고
    • Evaluation of global image thresholding for change detection
    • P. Rosin and E. Ioannidis. Evaluation of global image thresholding for change detection. Pattern Recognit. Lett., 24:2345-2356, 2003.
    • (2003) Pattern Recognit. Lett , vol.24 , pp. 2345-2356
    • Rosin, P.1    Ioannidis, E.2
  • 76
    • 84864995138 scopus 로고    scopus 로고
    • Improving foreground segmentations with probabilistic superpixel markov random fields
    • A. Schick, M. Bäuml, and R. Stiefelhagen. Improving foreground segmentations with probabilistic superpixel markov random fields. In IEEE Workshop on Change Detection, 2012.
    • (2012) IEEE Workshop on Change Detection
    • Schick, A.1    Bäuml, M.2    Stiefelhagen, R.3
  • 78
  • 80
    • 79953050293 scopus 로고    scopus 로고
    • Mixture of Gaussians-based background subtraction for Bayer-pattern image sequences
    • March
    • J. Suhr, H. Jung, G. Li, and J. Kim. Mixture of Gaussians-based background subtraction for Bayer-pattern image sequences. IEEE Trans. Circuits Syst. Video Technol., 21(3):365-370, March 2011.
    • (2011) IEEE Trans. Circuits Syst. Video Technol , vol.21 , Issue.3 , pp. 365-370
    • Suhr, J.1    Jung, H.2    Li, G.3    Kim, J.4
  • 81
    • 0033713738 scopus 로고    scopus 로고
    • Combining multiple classifiers by averaging or by multiplying?
    • D. Tax, M. van Breukelen, R. Duin, and J. Kittler. Combining multiple classifiers by averaging or by multiplying? Pattern Recognition, 33(9):1475-1485, 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1475-1485
    • Tax, D.1    van Breukelen, M.2    Duin, R.3    Kittler, J.4
  • 82
    • 35348867399 scopus 로고    scopus 로고
    • Robust salient motion detection with complex background for real-time video surveillance
    • Y-L. Tian and A. Hampapur. Robust salient motion detection with complex background for real-time video surveillance. In WACV/MOTION, pages 30-35, 2005.
    • (2005) WACV/MOTION , pp. 30-35
    • Tian, Y.-L.1    Hampapur, A.2
  • 85
    • 84864987290 scopus 로고    scopus 로고
    • Background subtraction: Experiments and improvements for ViBe
    • Providence, Rhode Island, USA, June
    • M. Van Droogenbroeck and O. Paquot. Background subtraction: Experiments and improvements for ViBe. In IEEE Workshop on Change Detection, pages 32-37, Providence, Rhode Island, USA, June 2012.
    • (2012) IEEE Workshop on Change Detection , pp. 32-37
    • van Droogenbroeck, M.1    Paquot, O.2
  • 86
    • 77955173456 scopus 로고    scopus 로고
    • Video surveillance online repository (ViSOR): An integrated framework
    • R. Vezzani and R. Cucchiara. Video surveillance online repository (ViSOR): an integrated framework. Multimedia Tools and Applications, 50(2):359-380, 2010.
    • (2010) Multimedia Tools and Applications , vol.50 , Issue.2 , pp. 359-380
    • Vezzani, R.1    Cucchiara, R.2
  • 87
    • 33750499046 scopus 로고    scopus 로고
    • A consensus-based method for tracking: Modelling background scenario and foreground appearance
    • March
    • H. Wang and D. Suter. A consensus-based method for tracking: Modelling background scenario and foreground appearance. Pattern Recognit., 40(3):1091-1105, March 2007.
    • (2007) Pattern Recognit , vol.40 , Issue.3 , pp. 1091-1105
    • Wang, H.1    Suter, D.2
  • 89
    • 1942438249 scopus 로고    scopus 로고
    • Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation
    • July
    • S. Warfield, K. Zou, and W. Wells. Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging, 23(7):903-921, July 2004.
    • (2004) IEEE Transactions on Medical Imaging , vol.23 , Issue.7 , pp. 903-921
    • Warfield, S.1    Zou, K.2    Wells, W.3
  • 90
    • 0034244906 scopus 로고    scopus 로고
    • Detecting salient motion by accumulating directionally-consistent flow
    • L. Wixson. Detecting salient motion by accumulating directionally-consistent flow. IEEE Trans. Pattern Anal. Machine Intell., 22, 2000.
    • (2000) IEEE Trans. Pattern Anal. Machine Intell , pp. 22
    • Wixson, L.1
  • 92
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • May-June
    • L. Xu, A. Krzyżak, and C. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics, 22(3):418-435, May-June 1992.
    • (1992) IEEE Transactions on Systems, Man, and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyżak, A.2    Suen, C.3
  • 93
    • 0001869554 scopus 로고    scopus 로고
    • Illumination-invariant motion detection using colour mixture models
    • M. Xu and T. Ellis. Illumination-invariant motion detection using colour mixture models. In British Mach. Vis. Conf, pages 163-172, 2001.
    • (2001) British Mach. Vis. Conf , pp. 163-172
    • Xu, M.1    Ellis, T.2
  • 94
    • 33845254583 scopus 로고    scopus 로고
    • An eigenbackground subtraction method using recursive error compensation
    • Z. Xu, P. Shi, and I. Yu-Hua Gu. An eigenbackground subtraction method using recursive error compensation. In PCM, pages 779-787, 2006.
    • (2006) PCM , pp. 779-787
    • Xu, Z.1    Shi, P.2    Yu-Hua Gu, I.3
  • 99
    • 0344551957 scopus 로고    scopus 로고
    • Segmenting foreground objects from a dynamic textured background via a robust kalman filter
    • J. Zhong and S. Sclaroff. Segmenting foreground objects from a dynamic textured background via a robust kalman filter. In Proc. IEEE Int. Conf. Computer Vision, pages 44-50, 2003.
    • (2003) Proc. IEEE Int. Conf. Computer Vision , pp. 44-50
    • Zhong, J.1    Sclaroff, S.2
  • 100
    • 27944498578 scopus 로고    scopus 로고
    • Modified GMM background modeling and optical flow for detection of moving objects
    • D. Zhou and H. Zhang. Modified GMM background modeling and optical flow for detection of moving objects. In Conf. IEEE Int. Conf. Sys., Man and Cyb., pages 2224-2229, 2005.
    • (2005) Conf. IEEE Int. Conf. Sys., Man and Cyb , pp. 2224-2229
    • Zhou, D.1    Zhang, H.2
  • 101
    • 33644870377 scopus 로고    scopus 로고
    • Efficient adaptive density estimation per image pixel for the task of background subtraction
    • Z. Zivkovic and F. Van Der Heijden. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett., 27:773-780, 2006.
    • (2006) Pattern Recognit. Lett , vol.27 , pp. 773-780
    • Zivkovic, Z.1    van Der Heijden, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.