메뉴 건너뛰기




Volumn , Issue , 2012, Pages 27-31

Improving foreground segmentations with probabilistic superpixel Markov random fields

Author keywords

[No Author keywords available]

Indexed keywords

CHANGE DETECTION; DATA SETS; FOREGROUND SEGMENTATION; MARKOV RANDOM FIELDS; PERFORMANCE MEASURE; PIXEL-BASED SEGMENTATION; POST PROCESSING; STRUCTURAL INFORMATION; SUPERPIXELS;

EID: 84864995138     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2012.6238923     Document Type: Conference Paper
Times cited : (112)

References (17)
  • 3
    • 77953199245 scopus 로고    scopus 로고
    • Motion Segmentation with Occlusions on the Superpixel Graph
    • A. Ayvaci and S. Soatto. Motion Segmentation with Occlusions on the Superpixel Graph. In Workshop on Dynamical Vision, pages 727-734, 2009.
    • (2009) Workshop on Dynamical Vision , pp. 727-734
    • Ayvaci, A.1    Soatto, S.2
  • 4
    • 79957497122 scopus 로고    scopus 로고
    • ViBe: A universal background subtraction algorithm for video sequences
    • June
    • O. Barnich and M. Van Droogenbroeck. ViBe: A universal background subtraction algorithm for video sequences. Transactions on Image Processing, 20(6):1709-1724, June 2011.
    • (2011) Transactions on Image Processing , vol.20 , Issue.6 , pp. 1709-1724
    • Barnich, O.1    Van Droogenbroeck, M.2
  • 5
    • 77957919935 scopus 로고    scopus 로고
    • Review and evaluation of commonly-implemented background subtraction algorithms
    • Y. Benezeth, P. Jodoin, B. Emile, H. Laurent, and C. Rosenberger. Review and evaluation of commonly-implemented background subtraction algorithms. In ICPR, 2008.
    • (2008) ICPR
    • Benezeth, Y.1    Jodoin, P.2    Emile, B.3    Laurent, H.4    Rosenberger, C.5
  • 7
    • 33746427122 scopus 로고    scopus 로고
    • Graph Cuts and Efficient N-D Image Segmentation
    • Y. Boykov and G. Funka-Lea. Graph Cuts and Efficient N-D Image Segmentation. IJCV, 70(2):109-131, 2006.
    • (2006) IJCV , vol.70 , Issue.2 , pp. 109-131
    • Boykov, Y.1    Funka-Lea, G.2
  • 8
    • 0001267733 scopus 로고    scopus 로고
    • Non-parametric Model for Background Subtraction
    • A. Elgammal, D. Harwood, and L. Davis. Non-parametric Model for Background Subtraction. In ECCV, 2000.
    • (2000) ECCV
    • Elgammal, A.1    Harwood, D.2    Davis, L.3
  • 10
    • 84864030626 scopus 로고    scopus 로고
    • Dynamic Foreground/Background Extraction from Images and Videos using Random Patches
    • L. Lu and G. Hager. Dynamic Foreground / Background Extraction from Images and Videos using Random Patches. In NIPS, pages 929-936, 2006.
    • (2006) NIPS , pp. 929-936
    • Lu, L.1    Hager, G.2
  • 11
    • 45949086871 scopus 로고    scopus 로고
    • A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications
    • July
    • L. Maddalena and A. Petrosino. A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications. Transactions on Image Processing, 17(7):1168-1177, July 2008.
    • (2008) Transactions on Image Processing , vol.17 , Issue.7 , pp. 1168-1177
    • Maddalena, L.1    Petrosino, A.2
  • 14
    • 15744378302 scopus 로고    scopus 로고
    • Background subtraction techniques: A review
    • M. Piccardi. Background subtraction techniques: a review. In Systems, Man and Cybernetics, pages 3099-3104, 2004.
    • (2004) Systems, Man and Cybernetics , pp. 3099-3104
    • Piccardi, M.1
  • 16
    • 0032634283 scopus 로고    scopus 로고
    • Adaptive background mixture models for real-time tracking
    • C. Stauffer and W. Grimson. Adaptive background mixture models for real-time tracking. In CVPR, 1999.
    • (1999) CVPR
    • Stauffer, C.1    Grimson, W.2
  • 17
    • 10044240378 scopus 로고    scopus 로고
    • Improved Adaptive Gaussian Mixture Model for Background Subtraction
    • A. S. Group
    • Z. Zivkovic and A. S. Group. Improved Adaptive Gaussian Mixture Model for Background Subtraction. In ICPR, 2004.
    • (2004) ICPR
    • Zivkovic, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.