메뉴 건너뛰기




Volumn 34, Issue 5, 2012, Pages 1017-1023

Density-based multifeature background subtraction with support vector machine

Author keywords

Background modeling and subtraction; Haar like features; kernel density approximation; support vector machine

Indexed keywords

BACKGROUND MODEL; BACKGROUND MODELING; BACKGROUND SUBTRACTION; BINARY SEGMENTATION; DENSITY-BASED; DENSITY-BASED METHOD; FEATURE COMBINATION; HAAR-LIKE FEATURES; HIGH-LEVEL COMPUTER VISION; ILLUMINATION CHANGES; KERNEL DENSITY; MODELING TECHNIQUE; MULTIPLE FEATURES; OBJECT DETECTION; PRE-PROCESSING STEP; SPATIAL VARIATIONS; SPATIO-TEMPORAL VARIATION; STATIC CAMERAS; SUPPORT VECTOR MACHINE (SVM);

EID: 84859175807     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2011.243     Document Type: Article
Times cited : (161)

References (32)
  • 3
    • 13344250629 scopus 로고    scopus 로고
    • Sequential kernel density approximation through mode propagation: Applications to background modeling
    • B. Han, D. Comaniciu, and L. Davis, "Sequential Kernel Density Approximation through Mode Propagation: Applications to Background Modeling," Proc. Asian Conf. Computer Vision, 2004.
    • (2004) Proc. Asian Conf. Computer Vision
    • Han, B.1    Comaniciu, D.2    Davis, L.3
  • 4
    • 18144412408 scopus 로고    scopus 로고
    • Effective gaussian mixture learning for video background subtraction
    • May
    • D.S. Lee, "Effective Gaussian Mixture Learning for Video Background Subtraction," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp. 827-832, May 2005.
    • (2005) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.27 , Issue.5 , pp. 827-832
    • Lee, D.S.1
  • 5
    • 33644870377 scopus 로고    scopus 로고
    • Efficient adaptive density estimation per image pixel for the task of background subtraction
    • DOI 10.1016/j.patrec.2005.11.005, PII S0167865505003521
    • Z. Zivkovic and F. van der Heijden, "Efficient Adaptive Density Estimation Per Image Pixel for Task of Background Subtraction," Pattern Recognition Letters, vol. 27, no. 7, pp. 773-780, 2006. (Pubitemid 43374860)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.7 , pp. 773-780
    • Zivkovic, Z.1    Van Der Heijden, F.2
  • 7
    • 45349101870 scopus 로고    scopus 로고
    • Sequential kernel density approximation and its application to real-time visual tracking
    • July
    • B. Han, D. Comaniciu, Y. Zhu, and L.S. Davis, "Sequential Kernel Density Approximation and Its Application to Real-Time Visual Tracking," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 7, pp. 1186-1197, July 2008.
    • (2008) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.30 , Issue.7 , pp. 1186-1197
    • Han, B.1    Comaniciu, D.2    Zhu, Y.3    Davis, L.S.4
  • 8
    • 84859173364 scopus 로고    scopus 로고
    • Adaptive background modeling and subtraction: A density-based approach with multiple features
    • Y. Ma and G. Qian eds. ch. 4 CRC Press
    • B. Han and L.S. Davis, "Adaptive Background Modeling and Subtraction: A Density-Based Approach with Multiple Features" Intelligent Video Surveillance Systems and Technology, Y. Ma and G. Qian eds., ch. 4, pp. 79-103, CRC Press, 2010.
    • (2010) Intelligent Video Surveillance Systems and Technology , pp. 79-103
    • Han, B.1    Davis, L.S.2
  • 10
    • 21644463503 scopus 로고    scopus 로고
    • Real-time foreground-background segmentation using codebook model
    • DOI 10.1016/j.rti.2004.12.004, PII S1077201405000057, Video Object Processing
    • K. Kim, T.H. Chalidabhongse, D. Harwood, and L. Davis, "Real-Time Foreground-Background Segmentation Using Codebook Model," Real-Time Imaging, vol. 11, no. 3, pp. 172-185, 2005. (Pubitemid 40929458)
    • (2005) Real-Time Imaging , vol.11 , Issue.3 , pp. 172-185
    • Kim, K.1    Chalidabhongse, T.H.2    Harwood, D.3    Davis, L.4
  • 14
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M.I. Jordan, ed. Kluwer Academic
    • R.M. Neal and G.E. Hinton, "A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants," Learning in Graphical Models, M.I. Jordan, ed., pp. 355-368, Kluwer Academic, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 16
    • 0027594549 scopus 로고
    • Adaptive mixture density estimation
    • C.E. Priebe and D.J. Marchette, "Adaptive Mixture Density Estimation," Pattern Recognition, vol. 26, no. 5, pp. 771-785, 1993.
    • (1993) Pattern Recognition , vol.26 , Issue.5 , pp. 771-785
    • Priebe, C.E.1    Marchette, D.J.2
  • 17
    • 0033098507 scopus 로고    scopus 로고
    • Tracking colour objects using adaptive mixture models
    • S.J. McKenna, Y. Raja, and S. Gong, "Tracking Colour Objects Using Adaptive Mixture Models," Image and Vision Computing J., vol. 17, pp. 223-229, 1999.
    • (1999) Image and Vision Computing J. , vol.17 , pp. 223-229
    • McKenna, S.J.1    Raja, Y.2    Gong, S.3
  • 20
    • 84937548105 scopus 로고    scopus 로고
    • Tracking and object classification for automated surveillance
    • O. Javed and M. Shah, "Tracking and Object Classification for Automated Surveillance," Proc. European Conf. Computer Vision, pp. 343-357, 2002.
    • (2002) Proc. European Conf. Computer Vision , pp. 343-357
    • Javed, O.1    Shah, M.2
  • 24
    • 0344551957 scopus 로고    scopus 로고
    • Segmenting foreground objects from a dynamic textured background via a robust kalman filter
    • J. Zhong and S. Sclaroff, "Segmenting Foreground Objects from a Dynamic Textured Background via a Robust Kalman Filter," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 44-50, 2003.
    • (2003) Proc. IEEE Conf. Computer Vision and Pattern Recognition , pp. 44-50
    • Zhong, J.1    Sclaroff, S.2
  • 25
    • 33144466752 scopus 로고    scopus 로고
    • A texture-based method for modeling the background and detecting moving objects
    • DOI 10.1109/TPAMI.2006.68
    • M. Heikkilä and M. Pietikäinen, "A Texture-Based Method for Modeling the Background and Detecting Moving Objects," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 657-662, Apr. 2006. (Pubitemid 43264663)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.4 , pp. 657-662
    • Heikkila, M.1    Pietikainen, M.2
  • 26
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex backgrounds for foreground object detection
    • Nov.
    • L. Li, W. Huang, I. Gu, and Q. Tian, "Statistical Modeling of Complex Backgrounds for Foreground Object Detection," IEEE Trans. Image Processing, vol. 13, no. 11, pp. 1459-1472, Nov. 2004.
    • (2004) IEEE Trans. Image Processing , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.3    Tian, Q.4
  • 28
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire, "The Strength of Weak Learnability," Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 29
    • 65649112472 scopus 로고    scopus 로고
    • Learning a scene background model via classification
    • May
    • H.-H. Lin, T.-L. Liu, and J.-H. Chuang, "Learning a Scene Background Model via Classification," IEEE Trans. Signal Processing, vol. 57, no. 5, pp. 1641-1654, May 2009.
    • (2009) IEEE Trans. Signal Processing , vol.57 , Issue.5 , pp. 1641-1654
    • Lin, H.-H.1    Liu, T.-L.2    Chuang, J.-H.3
  • 30
    • 38149095107 scopus 로고    scopus 로고
    • Real-time foreground-background segmentation using adaptive support vector machine algorithm
    • Z. Hao, W. Wen, Z. Liu, and X. Yang, "Real-Time Foreground- Background Segmentation Using Adaptive Support Vector Machine Algorithm," Proc. 17th Int'l Conf. Artificial Neural Networks, pp. 603-610, 2007.
    • (2007) Proc. 17th Int'l Conf. Artificial Neural Networks , pp. 603-610
    • Hao, Z.1    Wen, W.2    Liu, Z.3    Yang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.