메뉴 건너뛰기




Volumn 42, Issue 4, 2015, Pages 1872-1879

A comparison of some soft computing methods for software fault prediction

Author keywords

Adaptive neuro fuzzy systems; Artificial Neural Networks; McCabe metrics; Software fault prediction; Support Vector Machines

Indexed keywords


EID: 84969780549     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.10.025     Document Type: Article
Times cited : (113)

References (47)
  • 1
    • 79958251975 scopus 로고    scopus 로고
    • Evaluating the change of software fault behavior with dataset attributes based on categorical correlation
    • Alsmadi, I., & Najadat, H. (2011). Evaluating the change of software fault behavior with dataset attributes based on categorical correlation. Advances in Engineering Software, 42(8), 535-546.
    • (2011) Advances in Engineering Software , vol.42 , Issue.8 , pp. 535-546
    • Alsmadi, I.1    Najadat, H.2
  • 2
    • 78650690454 scopus 로고    scopus 로고
    • Software fault prediction: A literature review and current trends
    • Catal, C. (2011). Software fault prediction: A literature review and current trends. Expert Systems with Applications, 38(4), 4626-4636.
    • (2011) Expert Systems with Applications , vol.38 , Issue.4 , pp. 4626-4636
    • Catal, C.1
  • 3
    • 84866117799 scopus 로고    scopus 로고
    • Performance evaluation metrics for software fault prediction studies
    • Catal, C. (2012). Performance evaluation metrics for software fault prediction studies. Acta Polytechnica Hungarica, 9(4), 193-206.
    • (2012) Acta Polytechnica Hungarica , vol.9 , Issue.4 , pp. 193-206
    • Catal, C.1
  • 4
    • 59149091560 scopus 로고    scopus 로고
    • Investigating effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem
    • Catal, C., & Diri, B. (2009). Investigating effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem. Information Sciences, 179(8), 1040-1058.
    • (2009) Information Sciences , vol.179 , Issue.8 , pp. 1040-1058
    • Catal, C.1    Diri, B.2
  • 5
    • 78049530108 scopus 로고    scopus 로고
    • Practical development of an eclipse-based software fault prediction tool using Naive Bayes algorithm
    • Catal, C., Sevim, U., & Diri, B. (2011). Practical development of an eclipse-based software fault prediction tool using Naive Bayes algorithm. Expert Systems with Applications, 38(3), 2347-2353.
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 2347-2353
    • Catal, C.1    Sevim, U.2    Diri, B.3
  • 6
    • 84883655922 scopus 로고    scopus 로고
    • Predicting aging-related bugs using software complexity metrics
    • Cotroneo, D., Natella, R., & Pietrantuono, R. (2013). Predicting aging-related bugs using software complexity metrics. Performance Evaluation, 70(3), 163-178.
    • (2013) Performance Evaluation , vol.70 , Issue.3 , pp. 163-178
    • Cotroneo, D.1    Natella, R.2    Pietrantuono, R.3
  • 8
    • 84894432505 scopus 로고    scopus 로고
    • Software defect prediction using relational association rule mining
    • Czibula, G., Marian, Z., & Czibula, I. G. (2014). Software defect prediction using relational association rule mining. Information Sciences, 264, 260-278.
    • (2014) Information Sciences , vol.264 , pp. 260-278
    • Czibula, G.1    Marian, Z.2    Czibula, I.G.3
  • 9
    • 33748435610 scopus 로고    scopus 로고
    • ANFIS for high-pressure waterjet cleaning prediction
    • Daoming, G., & Jie, C. (2006). ANFIS for high-pressure waterjet cleaning prediction. Surface & Coatings Technology, 201(3), 1629-1634.
    • (2006) Surface & Coatings Technology , vol.201 , Issue.3 , pp. 1629-1634
    • Daoming, G.1    Jie, C.2
  • 10
    • 84867365738 scopus 로고    scopus 로고
    • Toward comprehensible software fault prediction models using bayesian network classifiers
    • Dejaeger, K., Verbraken, T., & Baesens, B. (2013). Toward comprehensible software fault prediction models using bayesian network classifiers. IEEE Transactions on Software Engineering, 39(2), 237-257.
    • (2013) IEEE Transactions on Software Engineering , vol.39 , Issue.2 , pp. 237-257
    • Dejaeger, K.1    Verbraken, T.2    Baesens, B.3
  • 11
    • 36849025506 scopus 로고    scopus 로고
    • Applying machine learning to software fault-proneness prediction
    • Gondra, I. (2008). Applying machine learning to software fault-proneness prediction. Journal of Systems and Software, 81(5), 186-195.
    • (2008) Journal of Systems and Software , vol.81 , Issue.5 , pp. 186-195
    • Gondra, I.1
  • 13
    • 33750338699 scopus 로고    scopus 로고
    • Robust recurrent neural network modeling for software fault detection and correction prediction
    • Hu, Q. P., Xie, M., Ng, S. H., & Levitin, G. (2007). Robust recurrent neural network modeling for software fault detection and correction prediction. Reliability Engineering & System Safety, 92(3), 332-340.
    • (2007) Reliability Engineering & System Safety , vol.92 , Issue.3 , pp. 332-340
    • Hu, Q.P.1    Xie, M.2    Ng, S.H.3    Levitin, G.4
  • 14
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man & Cybernetics, 23(3), 665-685.
    • (1993) IEEE Transactions on Systems, Man & Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 15
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • Kanellopoulas, I., & Wilkinson, G. G. (1997). Strategies and best practice for neural network image classification. International Journal of Remote Sensing, 18(4), 711-725.
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.4 , pp. 711-725
    • Kanellopoulas, I.1    Wilkinson, G.G.2
  • 17
    • 0031192278 scopus 로고    scopus 로고
    • Application of neural networks to software quality modeling of a very large telecommunications system
    • Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P., & Aud, S. J. (1997). Application of neural networks to software quality modeling of a very large telecommunications system. IEEE Transactions on Neural Networks, 8(4), 902-909.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4 , pp. 902-909
    • Khoshgoftaar, T.M.1    Allen, E.B.2    Hudepohl, J.P.3    Aud, S.J.4
  • 18
    • 84889657029 scopus 로고    scopus 로고
    • Software quality assessment using a multi-strategy classifier
    • Khosgoftaar, T. M., Xiao, Y., & Gao, K. (2014). Software quality assessment using a multi-strategy classifier. Information Sciences, 259, 555-570.
    • (2014) Information Sciences , vol.259 , pp. 555-570
    • Khosgoftaar, T.M.1    Xiao, Y.2    Gao, K.3
  • 19
    • 84914106409 scopus 로고    scopus 로고
    • Software defect prediction using ensemble learning on selected features
    • Laradji, I. H., Alshayeb, M., & Ghouti, L. (2014). Software defect prediction using ensemble learning on selected features. Information and Software Technology. http://dx.doi.org/10.1016/j.infsof.2014.07.005.
    • (2014) Information and Software Technology
    • Laradji, I.H.1    Alshayeb, M.2    Ghouti, L.3
  • 20
    • 0026821995 scopus 로고
    • Short-term load forecasting using an artificial neural network
    • Lee, K. Y., & Park, J. H. (1992). Short-term load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 7(1), 124-132.
    • (1992) IEEE Transactions on Power Systems , vol.7 , Issue.1 , pp. 124-132
    • Lee, K.Y.1    Park, J.H.2
  • 21
    • 0141959043 scopus 로고    scopus 로고
    • An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling
    • Lo, S. P. (2003). An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. Journal of Materials Processing Technology, 142(3), 665-675.
    • (2003) Journal of Materials Processing Technology , vol.142 , Issue.3 , pp. 665-675
    • Lo, S.P.1
  • 24
    • 84899030449 scopus 로고    scopus 로고
    • Comparative analysis of statistical and machine learning methods for predicting faulty modules
    • Malhotra, R. (2014). Comparative analysis of statistical and machine learning methods for predicting faulty modules. Applied Soft Computing, 21, 286-297.
    • (2014) Applied Soft Computing , vol.21 , pp. 286-297
    • Malhotra, R.1
  • 25
    • 84969849294 scopus 로고    scopus 로고
    • MathWorks Co., USA MathWorks Co., USA, visit date 12.03.2013
    • MATLAB (2009). User's Guide Version 7.8, R2009a. MathWorks Co., USA 〈http://www.mathworks.com/help/stats/svmtrain.html〉, MathWorks Co., USA, visit date 12.03.2013.
    • (2009) User's Guide Version 7.8 , pp. R2009a
    • MATLAB1
  • 28
    • 84865634266 scopus 로고    scopus 로고
    • Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation
    • Najah, A. A., El-Shafie, A., Karim, O. A., & Jaafar, O. (2012). Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Computing & Applications, 21(5), 833-841.
    • (2012) Neural Computing & Applications , vol.21 , Issue.5 , pp. 833-841
    • Najah, A.A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4
  • 30
    • 84887017156 scopus 로고    scopus 로고
    • A study of cyclic dependencies on defect profile of software components
    • Oyetoyan, T. D., Cruzes, D. S., & Conradi, R. (2013). A study of cyclic dependencies on defect profile of software components. Journal of Systems and Software, 86(12), 3162-3182.
    • (2013) Journal of Systems and Software , vol.86 , Issue.12 , pp. 3162-3182
    • Oyetoyan, T.D.1    Cruzes, D.S.2    Conradi, R.3
  • 31
    • 74449093253 scopus 로고    scopus 로고
    • Adaptive neurofuzzy ANFIS modeling of laser surface treatments
    • Perez, J. A., Gonzalez, M., & Dopico, D. (2010). Adaptive neurofuzzy ANFIS modeling of laser surface treatments. Neural Computing & Applications, 19(1), 85-90.
    • (2010) Neural Computing & Applications , vol.19 , Issue.1 , pp. 85-90
    • Perez, J.A.1    Gonzalez, M.2    Dopico, D.3
  • 32
    • 78649318558 scopus 로고    scopus 로고
    • Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia)
    • Pradhan, B., Sezer, E. A., Gokceoglu, C., & Buchroithner, M. F. (2010). Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4164-4177.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.12 , pp. 4164-4177
    • Pradhan, B.1    Sezer, E.A.2    Gokceoglu, C.3    Buchroithner, M.F.4
  • 37
    • 84872313045 scopus 로고    scopus 로고
    • On sampling strategies for small and continuous data with the modeling of genetic programming and adaptive neuro-fuzzy inference system
    • Sen, S., Sezer, E. A., Gokceoglu, C., & Yagiz, S. (2012). On sampling strategies for small and continuous data with the modeling of genetic programming and adaptive neuro-fuzzy inference system. Journal of Intelligent & Fuzzy System, 23(6), 297-304.
    • (2012) Journal of Intelligent & Fuzzy System , vol.23 , Issue.6 , pp. 297-304
    • Sen, S.1    Sezer, E.A.2    Gokceoglu, C.3    Yagiz, S.4
  • 38
    • 79952454832 scopus 로고    scopus 로고
    • Manifestation of an adaptive neurofuzzy model on landslide susceptibility mapping: Klang valley, Malaysia
    • Sezer, E. A., Pradhan, B., & Gokceoglu, C. (2011). Manifestation of an adaptive neurofuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Systems with Applications, 38(7), 8208-8219.
    • (2011) Expert Systems with Applications , vol.38 , Issue.7 , pp. 8208-8219
    • Sezer, E.A.1    Pradhan, B.2    Gokceoglu, C.3
  • 40
    • 84945200271 scopus 로고    scopus 로고
    • Application of neural networks for software quality prediction using object-oriented metrics
    • Amsterdam, The Netherlands
    • Thwin, M. M.m & Quah, T. (2003). Application of neural networks for software quality prediction using object-oriented metrics. In Proceedings of the 19th international conference on software maintenance (113-122). Amsterdam, The Netherlands.
    • (2003) Proceedings of the 19th International Conference on Software Maintenance , pp. 113-122
    • Thwin, M.M.M.1    Quah, T.2
  • 42
    • 0002660750 scopus 로고    scopus 로고
    • The support vector method of function estimation
    • J. A. K. Suykens & J. Vandewalle (Eds.), Boston: Kluwer Academic Publishers
    • Vapnik, V. (1998). The support vector method of function estimation. In J. A. K. Suykens & J. Vandewalle (Eds.), Nonlinear modeling: Advanced black-box techniques (pp. 55-85). Boston: Kluwer Academic Publishers.
    • (1998) Nonlinear Modeling: Advanced Black-box Techniques , pp. 55-85
    • Vapnik, V.1
  • 45
    • 84863921079 scopus 로고    scopus 로고
    • Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks
    • Yagiz, S., Sezer, E. A., & Gokceoglu, C. (2012). Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 36(14), 1636-1650.
    • (2012) International Journal for Numerical and Analytical Methods in Geomechanics , vol.36 , Issue.14 , pp. 1636-1650
    • Yagiz, S.1    Sezer, E.A.2    Gokceoglu, C.3
  • 46
    • 33947174112 scopus 로고    scopus 로고
    • Empirical analysis of object-oriented design metrics for predicting high and low severity faults
    • Zhou, Y., & Leung, H. (2006). Empirical analysis of object-oriented design metrics for predicting high and low severity faults. IEEE Transactions on Software Engineering, 32(10), 771-789.
    • (2006) IEEE Transactions on Software Engineering , vol.32 , Issue.10 , pp. 771-789
    • Zhou, Y.1    Leung, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.