메뉴 건너뛰기




Volumn 55, Issue 10, 2013, Pages 1810-1822

A study of subgroup discovery approaches for defect prediction

Author keywords

Defect prediction; Imbalanced datasets; Rules; Subgroup discovery

Indexed keywords

CLASSIFICATION TECHNIQUE; DEFECT PREDICTION; IMBALANCED DATA-SETS; MACHINE LEARNING APPROACHES; PREPROCESSING TECHNIQUES; RULES; SOFTWARE DEFECT PREDICTION; SUBGROUP DISCOVERY;

EID: 84880777880     PISSN: 09505849     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.infsof.2013.05.002     Document Type: Article
Times cited : (36)

References (75)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imieliński, and A. Swami Mining association rules between sets of items in large databases SIGMOD Record 22 1993 207 216
    • (1993) SIGMOD Record , vol.22 , pp. 207-216
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 3
    • 71649110371 scopus 로고    scopus 로고
    • A systematic and comprehensive investigation of methods to build and evaluate fault prediction models
    • E. Arisholm, L.C. Briand, and E.B. Johannessen A systematic and comprehensive investigation of methods to build and evaluate fault prediction models Journal of Systems and Software 83 2010 2 17
    • (2010) Journal of Systems and Software , vol.83 , pp. 2-17
    • Arisholm, E.1    Briand, L.C.2    Johannessen, E.B.3
  • 4
    • 67649233021 scopus 로고    scopus 로고
    • A hybrid heuristic approach to optimize rule-based software quality estimation models
    • D. Azar, H. Harmanani, and R. Korkmaz A hybrid heuristic approach to optimize rule-based software quality estimation models Information and Software Technology 51 2009 1365 1376
    • (2009) Information and Software Technology , vol.51 , pp. 1365-1376
    • Azar, D.1    Harmanani, H.2    Korkmaz, R.3
  • 5
    • 79951810442 scopus 로고    scopus 로고
    • An ant colony optimization algorithm to improve software quality prediction models: Case of class stability
    • D. Azar, and J. Vybihal An ant colony optimization algorithm to improve software quality prediction models: case of class stability Information and Software Technology 53 2011 388 393
    • (2011) Information and Software Technology , vol.53 , pp. 388-393
    • Azar, D.1    Vybihal, J.2
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Machine Learning 45 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 60249092995 scopus 로고    scopus 로고
    • A systematic review of software fault prediction studies
    • C. Catal, and B. Diri A systematic review of software fault prediction studies Expert Systems with Applications 36 2009 7346 7354
    • (2009) Expert Systems with Applications , vol.36 , pp. 7346-7354
    • Catal, C.1    Diri, B.2
  • 14
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark, and T. Niblett The CN2 induction algorithm Machine Learning 3 1989 261 283
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 17
    • 84863656628 scopus 로고    scopus 로고
    • Evaluating defect prediction approaches: A benchmark and an extensive comparison
    • M. D'Ambros, M. Lanza, and R. Robbes Evaluating defect prediction approaches: a benchmark and an extensive comparison Empirical Software Engineering 17 2012 531 577
    • (2012) Empirical Software Engineering , vol.17 , pp. 531-577
    • D'Ambros, M.1    Lanza, M.2    Robbes, R.3
  • 20
    • 40749135790 scopus 로고    scopus 로고
    • Predicting defect-prone software modules using support vector machines
    • DOI 10.1016/j.jss.2007.07.040, PII S016412120700235X
    • K.O. Elish, and M.O. Elish Predicting defect-prone software modules using support vector machines Journal of Systems and Software 81 2008 649 660 (Pubitemid 351389562)
    • (2008) Journal of Systems and Software , vol.81 , Issue.5 , pp. 649-660
    • Elish, K.O.1    Elish, M.O.2
  • 21
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett An introduction to ROC analysis Pattern Recognition Letters 27 2006 861 874
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 22
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • U.M. Fayyad, and K.B. Irani On the handling of continuous-valued attributes in decision tree generation Machine Learning 8 1992 87 102
    • (1992) Machine Learning , vol.8 , pp. 87-102
    • Fayyad, U.M.1    Irani, K.B.2
  • 23
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth From data mining to knowledge discovery in databases AI Magazine 17 1996 37 54
    • (1996) AI Magazine , vol.17 , pp. 37-54
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 24
    • 0033346610 scopus 로고    scopus 로고
    • Critique of software defect prediction models
    • DOI 10.1109/32.815326
    • N. Fenton, and M. Neil A critique of software defect prediction models IEEE Transactions on Software Engineering 25 1999 675 689 (Pubitemid 30541838)
    • (1999) IEEE Transactions on Software Engineering , vol.25 , Issue.5 , pp. 675-689
    • Fenton, N.E.1    Neil, M.2
  • 26
    • 30344485154 scopus 로고    scopus 로고
    • Empirical validation of object-oriented metrics on open source software for fault prediction
    • DOI 10.1109/TSE.2005.112
    • T. Gyimothy, R. Ferenc, and I. Siket Empirical validation of object-oriented metrics on open source software for fault prediction IEEE Transactions on Software Engineering 31 2005 897 910 (Pubitemid 43065752)
    • (2005) IEEE Transactions on Software Engineering , vol.31 , Issue.10 , pp. 897-910
    • Gyimothy, T.1    Ferenc, R.2    Siket, I.3
  • 28
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • M. Hall, and G. Holmes Benchmarking attribute selection techniques for discrete class data mining IEEE Transactions on Knowledge and Data Engineering 15 2003 1437 1447
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , pp. 1437-1447
    • Hall, M.1    Holmes, G.2
  • 30
    • 3042671822 scopus 로고
    • Elements of software science
    • Elsevier Computer Science Library, Elsevier New York, Oxford
    • M. Halstead Elements of software science Operating And Programming Systems Series vol. 2 1977 Elsevier Computer Science Library, Elsevier New York, Oxford
    • (1977) Operating and Programming Systems Series , vol.2
    • Halstead, M.1
  • 31
    • 0034207573 scopus 로고    scopus 로고
    • Experimental assessment of the effect of inheritance on the maintainability of object-oriented systems
    • R. Harrison, S. Counsell, and R. Nithi Experimental assessment of the effect of inheritance on the maintainability of object-oriented systems The Journal of Systems and Software 52 2000 173 179
    • (2000) The Journal of Systems and Software , vol.52 , pp. 173-179
    • Harrison, R.1    Counsell, S.2    Nithi, R.3
  • 34
    • 0036891333 scopus 로고    scopus 로고
    • Using regression trees to classify fault-prone software modules
    • DOI 10.1109/TR.2002.804488
    • T.M. Khoshgoftaar, E. Allen, and J. Deng Using regression trees to classify fault-prone software modules IEEE Transactions on Reliability 51 2002 455 462 (Pubitemid 35369801)
    • (2002) IEEE Transactions on Reliability , vol.51 , Issue.4 , pp. 455-462
    • Khoshgoftaar, T.M.1    Allen, E.B.2    Deng, J.3
  • 35
    • 0031192278 scopus 로고    scopus 로고
    • Application of neural networks to software quality modeling of a very large telecommunications system
    • PII S1045922797045505
    • T.M. Khoshgoftaar, E. Allen, J. Hudepohl, and S. Aud Application of neural networks to software quality modeling of a very large telecommunications system IEEE Transactions on Neural Networks 8 1997 902 909 (Pubitemid 127765148)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4 , pp. 902-909
    • Khoshgoftaar, T.M.1    Allen, E.B.2    Hudepohl, J.P.3    Aud, S.J.4
  • 36
    • 0141924286 scopus 로고    scopus 로고
    • Analogy-based practical classification rules for software quality estimation
    • T.M. Khoshgoftaar, and N. Seliya Analogy-based practical classification rules for software quality estimation Empirical Software Engineering 8 2003 325 350
    • (2003) Empirical Software Engineering , vol.8 , pp. 325-350
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 37
    • 3543063465 scopus 로고    scopus 로고
    • Comparative assessment of software quality classification techniques: An empirical case study
    • T.M. Khoshgoftaar, and N. Seliya Comparative assessment of software quality classification techniques: an empirical case study Empirical Software Engineering 9 2004 229 257
    • (2004) Empirical Software Engineering , vol.9 , pp. 229-257
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 39
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • American Association for Artificial Intelligence Menlo Park, CA, USA
    • W. Klösgen,Explora: a multipattern and multistrategy discovery assistant, in: Advances in Knowledge Discovery and Data Mining, 1996, American Association for Artificial Intelligence Menlo Park, CA, USA, pp. 249-271.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-271
    • Klösgen, W.1
  • 41
    • 28244461468 scopus 로고    scopus 로고
    • Building effective defect-prediction models in practice
    • DOI 10.1109/MS.2005.149
    • A.G. Koru, and H. Liu Building effective defect-prediction models in practice IEEE Software 22 2005 23 29 (Pubitemid 41709721)
    • (2005) IEEE Software , vol.22 , Issue.6 , pp. 23-29
    • Koru, A.G.1    Liu, H.2
  • 43
    • 61749084093 scopus 로고    scopus 로고
    • Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining
    • P. Kralj Novak, N. Lavrč, and G.I. Webb Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining Journal of Machine Learning Research 10 2009 377 403
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 377-403
    • Kralj Novak, P.1    Lavrč, N.2    Webb, G.I.3
  • 45
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • S. Lessmann, B. Baesens, C. Mues, and S. Pietsch Benchmarking classification models for software defect prediction: a proposed framework and novel findings IEEE Transactions on Software Engineering 34 2008 485 496
    • (2008) IEEE Transactions on Software Engineering , vol.34 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 48
    • 84976661022 scopus 로고
    • Design complexity measurement and testing
    • T.J. McCabe, and C.W. Butler Design complexity measurement and testing Communications of the ACM 32 1989 1415 1425
    • (1989) Communications of the ACM , vol.32 , pp. 1415-1425
    • McCabe, T.J.1    Butler, C.W.2
  • 53
    • 34548245485 scopus 로고    scopus 로고
    • Problems with precision: A response to "Comments on 'data mining static code attributes to learn defect predictors'"
    • DOI 10.1109/TSE.2007.70721
    • T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald Problems with precision: a response to comments on data mining static code attributes to learn defect predictors IEEE Transactions on Software Engineering 33 2007 637 640 (Pubitemid 47322970)
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.9 , pp. 637-640
    • Menzies, T.1    Dekhtyar, A.2    Distefano, J.3    Greenwald, J.4
  • 54
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • DOI 10.1109/TSE.2007.256941
    • T. Menzies, J. Greenwald, and A. Frank Data mining static code attributes to learn defect predictors IEEE Transactions on Software Engineering 33 2007 2 13 (Pubitemid 46002165)
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.1 , pp. 2-13
    • Menzies, T.1    Greenwald, J.2    Frank, A.3
  • 55
    • 77956972220 scopus 로고    scopus 로고
    • Defect prediction from static code features: Currentresults, limitations, new approaches
    • 10.1007/s10515-010-0069-5
    • T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener Defect prediction from static code features: currentresults, limitations, new approaches Automated Software Engineering 17 2010 375 407 10.1007/s10515-010- 0069-5
    • (2010) Automated Software Engineering , vol.17 , pp. 375-407
    • Menzies, T.1    Milton, Z.2    Turhan, B.3    Cukic, B.4    Jiang, Y.5    Bener, A.6
  • 56
    • 22944440671 scopus 로고    scopus 로고
    • Reliability and validity in comparative studies software prediction models
    • DOI 10.1109/TSE.2005.58
    • I. Myrtveit, E. Stensrud, and M. Shepperd Reliability and validity in comparative studies of software prediction models IEEE Transactions on Software Engineering 31 2005 380 391 (Pubitemid 41046926)
    • (2005) IEEE Transactions on Software Engineering , vol.31 , Issue.5 , pp. 380-391
    • Myrtveit, I.1    Stensrud, E.2    Shepperd, M.3
  • 58
    • 84857575716 scopus 로고    scopus 로고
    • User preferences based software defect detection algorithms selection using MCDM
    • Y. Peng, G. Wang, H. Wang, User preferences based software defect detection algorithms selection using MCDM, Information Sciences, 191 (2012) 3-13.
    • (2012) Information Sciences , vol.191 , pp. 3-13
    • Peng, Y.1    Wang, G.2    Wang, H.3
  • 60
  • 62
    • 84857597379 scopus 로고    scopus 로고
    • Searching for rules to detect defective modules: A subgroup discovery approach
    • D. Rodriguez, R. Ruiz, J. Riquelme, and J. Aguilar-Ruiz Searching for rules to detect defective modules: a subgroup discovery approach Information Sciences 191 2012 14 30
    • (2012) Information Sciences , vol.191 , pp. 14-30
    • Rodriguez, D.1    Ruiz, R.2    Riquelme, J.3    Aguilar-Ruiz, J.4
  • 64
    • 0035506767 scopus 로고    scopus 로고
    • Comparing software prediction techniques using simulation
    • DOI 10.1109/32.965341
    • M. Shepperd, and G. Kadoda Comparing software prediction techniques using simulation IEEE Transactions on Software Engineering 27 2001 1014 1022 (Pubitemid 33106029)
    • (2001) IEEE Transactions on Software Engineering , vol.27 , Issue.11 , pp. 1014-1022
    • Shepperd, M.1    Kadoda, G.2
  • 65
    • 72549105852 scopus 로고    scopus 로고
    • Empirical validation of object-oriented metrics for predicting fault proneness models
    • 10.1007/s11219-009-9079-6
    • Y. Singh, A. Kaur, and R. Malhotra Empirical validation of object-oriented metrics for predicting fault proneness models Software Quality Journal 18 2010 3 35 10.1007/s11219-009-9079-6
    • (2010) Software Quality Journal , vol.18 , pp. 3-35
    • Singh, Y.1    Kaur, A.2    Malhotra, R.3
  • 66
    • 33644657610 scopus 로고    scopus 로고
    • Software defect association mining and defect correction effort prediction
    • DOI 10.1109/TSE.2006.1599417
    • Q. Song, M. Shepperd, M. Cartwright, and C. Mair Software defect association mining and defect correction effort prediction IEEE Transactions on Software Engineering 32 2006 69 82 (Pubitemid 43323904)
    • (2006) IEEE Transactions on Software Engineering , vol.32 , Issue.2 , pp. 69-82
    • Song, Q.1    Shepperd, M.2    Cartwright, M.3    Mair, C.4
  • 67
    • 40749154789 scopus 로고    scopus 로고
    • Mining software repositories for comprehensible software fault prediction models
    • DOI 10.1016/j.jss.2007.07.034, PII S0164121207001902
    • O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Haesen Mining software repositories for comprehensible software fault prediction models Journal of Systems and Software 81 2008 823 839 (Pubitemid 351389560)
    • (2008) Journal of Systems and Software , vol.81 , Issue.5 , pp. 823-839
    • Vandecruys, O.1    Martens, D.2    Baesens, B.3    Mues, C.4    De Backer, M.5    Haesen, R.6
  • 68
    • 34248541466 scopus 로고    scopus 로고
    • Structured testing: A testing methodology using the cyclomatic complexity metric
    • A.H. Watson, T.J. McCabe, and D.R. Wallace Structured testing: a testing methodology using the cyclomatic complexity metric NIST Special Publication 500 1996 1 114
    • (1996) NIST Special Publication , vol.500 , pp. 1-114
    • Watson, A.H.1    McCabe, T.J.2    Wallace, D.R.3
  • 72
    • 0011177327 scopus 로고    scopus 로고
    • Relational Data Mining Springer pp. 74-101
    • S. Wrobel Relational data mining Relational Data Mining 2001 Springer pp. 74-101
    • (2001) Relational Data Mining
    • Wrobel, S.1
  • 74
    • 34548253429 scopus 로고    scopus 로고
    • Comments on "data mining static code attributes to learn defect predictors"
    • H. Zhang, and X. Zhang Comments on "Data mining static code attributes to learn defect predictors" IEEE Transactions on Software Engineering 33 2007 635 637
    • (2007) IEEE Transactions on Software Engineering , vol.33 , pp. 635-637
    • Zhang, H.1    Zhang, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.