메뉴 건너뛰기




Volumn 264, Issue , 2014, Pages 260-278

Software defect prediction using relational association rule mining

Author keywords

Association rule; Data mining; Defect prediction; Software engineering

Indexed keywords


EID: 84894432505     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.12.031     Document Type: Article
Times cited : (140)

References (52)
  • 1
  • 5
    • 0036649954 scopus 로고    scopus 로고
    • Assessing the applicability of fault-proneness models across object-oriented software projects
    • L.C. Briand, W.L. Melo, and J. Wust Assessing the applicability of fault-proneness models across object-oriented software projects IEEE Trans. Softw. Eng. 28 7 2002 706 720
    • (2002) IEEE Trans. Softw. Eng. , vol.28 , Issue.7 , pp. 706-720
    • Briand, L.C.1    Melo, W.L.2    Wust, J.3
  • 6
    • 84860797680 scopus 로고    scopus 로고
    • An algorithm for the discovery of arbitrary length ordinal association rules
    • A. Campan, G. Serban, T.M. Truta, and A. Marcus An algorithm for the discovery of arbitrary length ordinal association rules DMIN 2006 107 113
    • (2006) DMIN , pp. 107-113
    • Campan, A.1    Serban, G.2    Truta, T.M.3    Marcus, A.4
  • 8
    • 80755125726 scopus 로고    scopus 로고
    • Software defect prediction using non-negative matrix factorization
    • R. hua Chang, X. Mu, and L. Zhang Software defect prediction using non-negative matrix factorization J. Softw. 6 11 2011 2114 2120
    • (2011) J. Softw. , vol.6 , Issue.11 , pp. 2114-2120
    • Hua Chang, R.1    Mu, X.2    Zhang, L.3
  • 10
    • 84860648659 scopus 로고    scopus 로고
    • Evaluating defect prediction approaches: A benchmark and an extensive comparison
    • M. D'Ambros, M. Lanza, and R. Robbes Evaluating defect prediction approaches: a benchmark and an extensive comparison Int. J. Emp. Softw. Eng. 2011 1 47
    • (2011) Int. J. Emp. Softw. Eng. , pp. 1-47
    • D'Ambros, M.1    Lanza, M.2    Robbes, R.3
  • 11
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett An introduction to roc analysis Pattern Recogn. Lett. 27 8 2006 861 874
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 15
    • 16244370106 scopus 로고    scopus 로고
    • Robust prediction of fault-proneness by random forests
    • L. Guo, Y. Ma, B. Cukic, and H. Singh Robust prediction of fault-proneness by random forests ISSRE 2004 417 428
    • (2004) ISSRE , pp. 417-428
    • Guo, L.1    Ma, Y.2    Cukic, B.3    Singh, H.4
  • 16
    • 84894459951 scopus 로고    scopus 로고
    • Applying mining schemes to software fault prediction: A proposed approach aimed at test cost reduction
    • WCE 2012 IEEE Computer Society Washington, DC, USA
    • A.S. Haghighi, M.A. Dezfuli, and S. Fakhrahmad Applying mining schemes to software fault prediction: a proposed approach aimed at test cost reduction Proceedings of the World Congress on Engineering 2012 WCE 2012 vol. I 2012 IEEE Computer Society Washington, DC, USA 1 5
    • (2012) Proceedings of the World Congress on Engineering 2012 , vol.VOL. I , pp. 1-5
    • Haghighi, A.S.1    Dezfuli, M.A.2    Fakhrahmad, S.3
  • 17
    • 84870561393 scopus 로고    scopus 로고
    • A systematic literature review on fault prediction performance in software engineering
    • T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell A systematic literature review on fault prediction performance in software engineering IEEE Trans. Softw. Eng. 38 6 2012 1276 1304
    • (2012) IEEE Trans. Softw. Eng. , vol.38 , Issue.6 , pp. 1276-1304
    • Hall, T.1    Beecham, S.2    Bowes, D.3    Gray, D.4    Counsell, S.5
  • 19
  • 20
    • 0019613747 scopus 로고
    • Software structure metrics based on information flow
    • S. Henry, and D. Kafura Software structure metrics based on information flow IEEE Trans. Softw. Eng. 7 5 1981 510 518
    • (1981) IEEE Trans. Softw. Eng. , vol.7 , Issue.5 , pp. 510-518
    • Henry, S.1    Kafura, D.2
  • 21
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holte Very simple classification rules perform well on most commonly used datasets Mach. Lear. 1993 63 91
    • (1993) Mach. Lear. , pp. 63-91
    • Holte, R.C.1
  • 22
    • 52549091028 scopus 로고    scopus 로고
    • Techniques for evaluating fault prediction models
    • Y. Jiang, B. Cukic, and Y. Ma Techniques for evaluating fault prediction models Emp. Softw. Eng. 13 5 2008 561 595
    • (2008) Emp. Softw. Eng. , vol.13 , Issue.5 , pp. 561-595
    • Jiang, Y.1    Cukic, B.2    Ma, Y.3
  • 23
    • 79953007594 scopus 로고    scopus 로고
    • Software defect detection with rocus
    • Y. Jiang, M. Li, and Z.-H. Zhou Software defect detection with rocus J. Comp. Sci. Technol. 26 2 2011 328 342
    • (2011) J. Comp. Sci. Technol. , vol.26 , Issue.2 , pp. 328-342
    • Jiang, Y.1    Li, M.2    Zhou, Z.-H.3
  • 26
    • 84894462275 scopus 로고    scopus 로고
    • Data mining techniques for software defect prediction
    • M.P.J. Kaur, and M. Pallavi Data mining techniques for software defect prediction Int. J. Softw. Web Sci. 1 3 2013 54 57
    • (2013) Int. J. Softw. Web Sci. , vol.1 , Issue.3 , pp. 54-57
    • Kaur, M.P.J.1    Pallavi, M.2
  • 28
    • 84856674640 scopus 로고    scopus 로고
    • Sample-based software defect prediction with active and semi-supervised learning
    • M. Li, H. Zhang, R. Wu, and Z.-H. Zhou Sample-based software defect prediction with active and semi-supervised learning Auto. Softw. Eng. 19 2 2012 201 230
    • (2012) Auto. Softw. Eng. , vol.19 , Issue.2 , pp. 201-230
    • Li, M.1    Zhang, H.2    Wu, R.3    Zhou, Z.-H.4
  • 31
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. López, A. Fernández, S. García, V. Palade, and F. Herrera An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics Inform. Sci. 250 2013 113 141
    • (2013) Inform. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 34
    • 84874171696 scopus 로고    scopus 로고
    • Using software metrics for automatic software design improvement
    • Z. Marian, G. Czibula, and I.G. Czibula Using software metrics for automatic software design improvement Stud. Inform. Control 21 3 2012 249 258
    • (2012) Stud. Inform. Control , vol.21 , Issue.3 , pp. 249-258
    • Marian, Z.1    Czibula, G.2    Czibula, I.G.3
  • 35
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • T. Menzies, J. Greenwald, and A. Frank Data mining static code attributes to learn defect predictors IEEE Trans. Softw. Eng. 33 1 2007 2 13
    • (2007) IEEE Trans. Softw. Eng. , vol.33 , Issue.1 , pp. 2-13
    • Menzies, T.1    Greenwald, J.2    Frank, A.3
  • 37
    • 84857372714 scopus 로고    scopus 로고
    • Special issue on repeatable results in software engineering prediction
    • T. Menzies, and M. Shepperd Special issue on repeatable results in software engineering prediction Emp. Softw. Eng. 17 2012 1 17
    • (2012) Emp. Softw. Eng. , vol.17 , pp. 1-17
    • Menzies, T.1    Shepperd, M.2
  • 38
    • 84875225704 scopus 로고    scopus 로고
    • Mining numerical association rules via multi-objective genetic algorithms
    • B. Minaei-Bidgoli, R. Barmaki, and M. Nasiri Mining numerical association rules via multi-objective genetic algorithms Inform. Sci. 233 2013 15 24
    • (2013) Inform. Sci. , vol.233 , pp. 15-24
    • Minaei-Bidgoli, B.1    Barmaki, R.2    Nasiri, M.3
  • 40
    • 84894499965 scopus 로고    scopus 로고
    • NASA independent verification& validation facility
    • NASA independent verification& validation facility < http://www.nasa.gov/centers/ivv/home/index.html >.
  • 41
    • 84894429337 scopus 로고    scopus 로고
    • NASA software defect datasets
    • NASA software defect datasets < http://nasa-softwaredefectdatasets. wikispaces.com/ >.
  • 42
    • 84876956653 scopus 로고    scopus 로고
    • FARP: Mining fuzzy association rules from a probabilistic quantitative database
    • Bin Pe, Suyun Zhao, Hong Chen, Xuan Zhou, and Dingjie Chen FARP: Mining fuzzy association rules from a probabilistic quantitative database Inform. Sci. 237 2013 242 260
    • (2013) Inform. Sci. , vol.237 , pp. 242-260
    • Pe, B.1    Zhao, S.2    Chen, H.3    Zhou, X.4    Chen, D.5
  • 43
    • 84878223411 scopus 로고    scopus 로고
    • A fuzzy classifier approach to estimating software quality
    • N.J. Pizzi A fuzzy classifier approach to estimating software quality Inform. Sci. 241 2013 1 11
    • (2013) Inform. Sci. , vol.241 , pp. 1-11
    • Pizzi, N.J.1
  • 44
    • 84894492714 scopus 로고    scopus 로고
    • Software defect prediction models for quality improvement: A literature study
    • M.S. Rawat, and S.K. Dubey Software defect prediction models for quality improvement: a literature study Int. J. Comp. Sci. Iss. 9 2 2012 288 296
    • (2012) Int. J. Comp. Sci. Iss. , vol.9 , Issue.2 , pp. 288-296
    • Rawat, M.S.1    Dubey, S.K.2
  • 45
    • 84857597379 scopus 로고    scopus 로고
    • Searching for rules to detect defective modules: A subgroup discovery approach
    • D. Rodríguez, R. Ruiz, J.C. Riquelme, and J.S.N. Aguilar-Ruiz Searching for rules to detect defective modules: a subgroup discovery approach Inform. Sci. 191 2012 14 30
    • (2012) Inform. Sci. , vol.191 , pp. 14-30
    • Rodríguez, D.1    Ruiz, R.2    Riquelme, J.C.3    Aguilar-Ruiz, J.S.N.4
  • 46
    • 84894413920 scopus 로고    scopus 로고
    • Data quality: Some comments on the NASA software defect data sets
    • (PrePrints)
    • M. Shepperd, Q. Song, Z. Sun, and C. Mair Data quality: some comments on the NASA software defect data sets IEEE Trans. Softw. Eng. 99 2013 1 (PrePrints)
    • (2013) IEEE Trans. Softw. Eng. , vol.99 , pp. 1
    • Shepperd, M.1    Song, Q.2    Sun, Z.3    Mair, C.4
  • 49
    • 79957799751 scopus 로고    scopus 로고
    • A general software defect proneness prediction framework
    • Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu A general software defect proneness prediction framework IEEE Trans. Softw. Eng. 37 3 2011 356 370
    • (2011) IEEE Trans. Softw. Eng. , vol.37 , Issue.3 , pp. 356-370
    • Song, Q.1    Jia, Z.2    Shepperd, M.3    Ying, S.4    Liu, J.5
  • 50
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • C. Spearman The proof and measurement of association between two things Am. J. Psychol. 15 1904 72 101
    • (1904) Am. J. Psychol. , vol.15 , pp. 72-101
    • Spearman, C.1
  • 51
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • S. Stehman Selecting and interpreting measures of thematic classification accuracy Rem. Sens. Environ. 62 1 1997 77 89
    • (1997) Rem. Sens. Environ. , vol.62 , Issue.1 , pp. 77-89
    • Stehman, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.