메뉴 건너뛰기




Volumn 21, Issue , 2014, Pages 286-297

Comparative analysis of statistical and machine learning methods for predicting faulty modules

Author keywords

Logistic regression; Machine learning; Receiver Operating Characteristic (ROC) curve; Software quality; Static code metrics

Indexed keywords

COMPUTER SOFTWARE SELECTION AND EVALUATION; DECISION TREES; LEARNING ALGORITHMS; NEURAL NETWORKS; REGRESSION ANALYSIS; SOFTWARE DESIGN; SOFTWARE TESTING;

EID: 84899030449     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.03.032     Document Type: Article
Times cited : (87)

References (56)
  • 2
    • 59349113225 scopus 로고    scopus 로고
    • Empirical analysis for investigating the effect of object-oriented metrics on fault proneness: A replicated case study
    • (John Wiley & Sons)
    • K.K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra Empirical analysis for investigating the effect of object-oriented metrics on fault proneness: a replicated case study Softw. Process Improv. Pract. 16 1 2009 39 62 (John Wiley & Sons)
    • (2009) Softw. Process Improv. Pract. , vol.16 , Issue.1 , pp. 39-62
    • Aggarwal, K.K.1    Singh, Y.2    Kaur, A.3    Malhotra, R.4
  • 4
    • 0001622174 scopus 로고    scopus 로고
    • A validation of object-oriented design metrics as quality indicators
    • V. Basili, L. Briand, and W. Melo A validation of object-oriented design metrics as quality indicators IEEE Trans. Softw. Eng. 22 10 1996 751 761
    • (1996) IEEE Trans. Softw. Eng. , vol.22 , Issue.10 , pp. 751-761
    • Basili, V.1    Briand, L.2    Melo, W.3
  • 6
    • 57649232840 scopus 로고    scopus 로고
    • Analysis of Naive Bayes' assumptions on software fault data: An empirical study
    • A. Bener, and B. Turhan Analysis of Naive Bayes' assumptions on software fault data: an empirical study Data Knowl. Eng. 68 2009 278 290
    • (2009) Data Knowl. Eng. , vol.68 , pp. 278-290
    • Bener, A.1    Turhan, B.2
  • 7
    • 0343280011 scopus 로고    scopus 로고
    • Exploring the relationships between design measures and software quality
    • L. Briand, W. Daly, and J. Wust Exploring the relationships between design measures and software quality J. Syst. Softw. 51 3 2000 245 273
    • (2000) J. Syst. Softw. , vol.51 , Issue.3 , pp. 245-273
    • Briand, L.1    Daly, W.2    Wust, J.3
  • 8
    • 33845788159 scopus 로고    scopus 로고
    • The relationship of cyclomatic complexity, essential complexity and error rates
    • M. Chapman, and D. Solomon The relationship of cyclomatic complexity, essential complexity and error rates Proc. NASA Software Assurance Symp. 2002 http://www.ivv.nasa.gov/business/research/osmasas/conclusion2002/ Mike-Chapman-The-Relationship-of-Cyclomatic-Complexity-Essential-Complexity-and- Error-Rates.ppt
    • (2002) Proc. NASA Software Assurance Symp.
    • Chapman, M.1    Solomon, D.2
  • 10
    • 78049530108 scopus 로고    scopus 로고
    • Practical development of an Eclipse-based software fault prediction tool using Naive Bayes algorithm
    • B. Diri, C. Catal, and U. Sevim Practical development of an Eclipse-based software fault prediction tool using Naive Bayes algorithm Expert Syst. Appl. 38 2011 2347 2353
    • (2011) Expert Syst. Appl. , vol.38 , pp. 2347-2353
    • Diri, B.1    Catal, C.2    Sevim, U.3
  • 11
    • 0043126911 scopus 로고    scopus 로고
    • Logistic Regression and Artificial Neural Network Classification models: A methodology review
    • S. Dreiseitl, and L. Ohno-Machado Logistic Regression and Artificial Neural Network Classification models: a methodology review J. Biomed. Inform. 35 2002 352 359
    • (2002) J. Biomed. Inform. , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 12
    • 81855188617 scopus 로고    scopus 로고
    • Comparison of decision tree algorithms in identifying bank customers who are likely to buy credit cards
    • Kaunas, Lithuania, July 3-6
    • E. Duman Comparison of decision tree algorithms in identifying bank customers who are likely to buy credit cards Seventh International Baltic Conference on Databases and Information Systems Kaunas, Lithuania, July 3-6 2006
    • (2006) Seventh International Baltic Conference on Databases and Information Systems
    • Duman, E.1
  • 13
    • 15244347342 scopus 로고    scopus 로고
    • Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data
    • B. Eftekhar, K. Mohammad, H. Ardebili, M. Ghodsi, and E. Ketabchi Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data BMC Med. Inform. Decis. Mak. 2005
    • (2005) BMC Med. Inform. Decis. Mak.
    • Eftekhar, B.1    Mohammad, K.2    Ardebili, H.3    Ghodsi, M.4    Ketabchi, E.5
  • 15
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: A new adaptive algorithm for solving problems
    • C. Ferreira Gene expression programming: a new adaptive algorithm for solving problems Complex Syst. 13 2001 87 129
    • (2001) Complex Syst. , vol.13 , pp. 87-129
    • Ferreira, C.1
  • 21
    • 0020083498 scopus 로고
    • The meaning and use of the area under a Receiver Operating Characteristic ROC curve
    • J. Hanley, and B.J. McNeil The meaning and use of the area under a Receiver Operating Characteristic ROC curve Radiology 143 1982 29 36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    Mcneil, B.J.2
  • 22
    • 0019613747 scopus 로고
    • Software structure metrics based on information flow
    • S. Henry, and D. Kafura Software structure metrics based on information flow IEEE Trans. Softw. Eng. 7 5 1981 510 518
    • (1981) IEEE Trans. Softw. Eng. , vol.7 , Issue.5 , pp. 510-518
    • Henry, S.1    Kafura, D.2
  • 23
    • 84898992521 scopus 로고    scopus 로고
    • http://softlab.boun.edu.tr
  • 26
    • 0035688708 scopus 로고    scopus 로고
    • An application of zero-inflated Poisson regression for software fault prediction
    • November
    • T. Khoshgoftaar An application of zero-inflated Poisson regression for software fault prediction Proc. 12th Intl. Symp. Software Reliability Eng. November 2001 66 73
    • (2001) Proc. 12th Intl. Symp. Software Reliability Eng. , pp. 66-73
    • Khoshgoftaar, T.1
  • 28
    • 0031192278 scopus 로고    scopus 로고
    • Application of neural networks to software quality modeling of a very large telecommunications system
    • T. Khoshgaftaar, E.D. Allen, J.P. Hudepohl, and S.J. Aud Application of neural networks to software quality modeling of a very large telecommunications system IEEE Trans. Neural Netw. 8 4 1997 902 909
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.4 , pp. 902-909
    • Khoshgaftaar, T.1    Allen, E.D.2    Hudepohl, J.P.3    Aud, S.J.4
  • 29
    • 0042767590 scopus 로고    scopus 로고
    • Fault prediction modeling for software quality estimation: Comparing commonly used techniques
    • T. Khoshgoftaar, and N. Seliya Fault prediction modeling for software quality estimation: comparing commonly used techniques Empirical Softw. Eng. 8 3 2003 255 283
    • (2003) Empirical Softw. Eng. , vol.8 , Issue.3 , pp. 255-283
    • Khoshgoftaar, T.1    Seliya, N.2
  • 30
    • 28244461468 scopus 로고    scopus 로고
    • Building effective defect-prediction models in practice
    • A.G. Koru, and H. Liu Building effective defect-prediction models in practice IEEE Softw. 22 2005
    • (2005) IEEE Softw. , vol.22
    • Koru, A.G.1    Liu, H.2
  • 32
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • S. Lessmann, B. Baesens, C. Mues, and S. Pietsch Benchmarking classification models for software defect prediction: a proposed framework and novel findings IEEE Trans. Softw. Eng. 34 2008 485 496
    • (2008) IEEE Trans. Softw. Eng. , vol.34 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 33
    • 84899014085 scopus 로고    scopus 로고
    • Prediction of high, medium, and low severity faults using software metrics
    • R. Malhotra Prediction of high, medium, and low severity faults using software metrics Softw. Qual. Prof. 2013
    • (2013) Softw. Qual. Prof.
    • Malhotra, R.1
  • 34
    • 39149085365 scopus 로고    scopus 로고
    • Artificial neural networks in chemometrics: History, examples and perspectives
    • F. Marini, R. Bucci, A.L. Magri, and A.D. Magri Artificial neural networks in chemometrics: history, examples and perspectives Microchem. J. 88 2 2008 178 185
    • (2008) Microchem. J. , vol.88 , Issue.2 , pp. 178-185
    • Marini, F.1    Bucci, R.2    Magri, A.L.3    Magri, A.D.4
  • 38
    • 79958259189 scopus 로고    scopus 로고
    • An industrial case study of classifier ensembles for locating software defects
    • A.T. MIsIrlI, A.B. Bener, and B. Turhan An industrial case study of classifier ensembles for locating software defects Softw. Qual. J. 19 2011 515 536
    • (2011) Softw. Qual. J. , vol.19 , pp. 515-536
    • Misirli, A.T.1    Bener, A.B.2    Turhan, B.3
  • 39
    • 33244495065 scopus 로고    scopus 로고
    • Static analysis tools as early indicators of pre-release defect density
    • N. Nagappan, and T. Ball Static analysis tools as early indicators of pre-release defect density Proc. Intl. Conf. Software Eng. 2005 580 586
    • (2005) Proc. Intl. Conf. Software Eng. , pp. 580-586
    • Nagappan, N.1    Ball, T.2
  • 41
    • 84893792387 scopus 로고    scopus 로고
    • Software defect prediction using Bayesian networks
    • A. Okutan, and O.T. YIldIz Software defect prediction using Bayesian networks Empirical Softw. Eng. 2012
    • (2012) Empirical Softw. Eng.
    • Okutan, A.1    Yildiz, O.T.2
  • 42
    • 0025399116 scopus 로고
    • Empirically guided software development using metric-based classification trees
    • A. Porter, and R. Selby Empirically guided software development using metric-based classification trees IEEE Softw. 1990 46 54
    • (1990) IEEE Softw. , pp. 46-54
    • Porter, A.1    Selby, R.2
  • 45
    • 84899013750 scopus 로고    scopus 로고
    • Promise, http://promisedata.org/repository/.
    • Promise
  • 50
    • 0029255026 scopus 로고
    • Machine learning approaches to estimating software development effort
    • K. Srinivasan, and D. Fisher Machine learning approaches to estimating software development effort IEEE Trans. Softw. Eng. 1995 126 137
    • (1995) IEEE Trans. Softw. Eng. , pp. 126-137
    • Srinivasan, K.1    Fisher, D.2
  • 51
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone Cross-validatory choice and assessment of statistical predictions J. Royal Stat. Soc. 36 1974 111 147
    • (1974) J. Royal Stat. Soc. , vol.36 , pp. 111-147
    • Stone, M.1
  • 52
    • 79957566605 scopus 로고    scopus 로고
    • Software faults prediction using multiple classifiers
    • B. Twala Software faults prediction using multiple classifiers 2011 3rd Int. Conf. Comput. Res. Dev., 4 2011 504 510
    • (2011) 2011 3rd Int. Conf. Comput. Res. Dev., 4 , pp. 504-510
    • Twala, B.1
  • 54
    • 84857608172 scopus 로고    scopus 로고
    • An evolutionary programming based asymmetric weighted least squares support vector machine ensemble learning methodology for software repository mining
    • L. Yu An evolutionary programming based asymmetric weighted least squares support vector machine ensemble learning methodology for software repository mining Inf. Sci. 191 2012 31 46
    • (2012) Inf. Sci. , vol.191 , pp. 31-46
    • Yu, L.1
  • 55
    • 33947174112 scopus 로고    scopus 로고
    • Empirical analysis of Object-Oriented Design Metrics for predicting high severity faults
    • Y. Zhou, and H. Leung Empirical analysis of Object-Oriented Design Metrics for predicting high severity faults IEEE Trans. Softw. Eng. 32 10 2006 771 784
    • (2006) IEEE Trans. Softw. Eng. , vol.32 , Issue.10 , pp. 771-784
    • Zhou, Y.1    Leung, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.