메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3-13

Introduction to Artificial Neural Network (ANN) as a Predictive Tool for Drug Design, Discovery, Delivery, and Disposition: Basic Concepts and Modeling. Basic Concepts and Modeling

Author keywords

ANN as classifier; ANN in Blood Brain Barrier (BBB) permeability; ANN in medicine; Artificial Neural Network; Neural network in pharmaceutical

Indexed keywords

BACKPROPAGATION; BLOOD; CONTROLLED DRUG DELIVERY; NEURONS; REINFORCEMENT LEARNING; TARGETED DRUG DELIVERY;

EID: 84967360252     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-0-12-801559-9.00001-6     Document Type: Chapter
Times cited : (59)

References (29)
  • 1
    • 84906042978 scopus 로고    scopus 로고
    • Drug-target and disease networks: polypharmacology in the post-genomic era
    • Masoudi-Nejad A., Mousavian Z., Bozorgmehr J.H. Drug-target and disease networks: polypharmacology in the post-genomic era. Silico Pharmacol 2013, 1:17.
    • (2013) Silico Pharmacol , vol.1 , pp. 17
    • Masoudi-Nejad, A.1    Mousavian, Z.2    Bozorgmehr, J.H.3
  • 2
    • 0035292910 scopus 로고    scopus 로고
    • Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract
    • Horter D., Dressman J.B. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 2001, 46(1-3):75-87.
    • (2001) Adv Drug Deliv Rev , vol.46 , Issue.1-3 , pp. 75-87
    • Horter, D.1    Dressman, J.B.2
  • 3
    • 84879468832 scopus 로고    scopus 로고
    • In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim
    • Sjogren E., et al. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci 2013, 49(4):679-698.
    • (2013) Eur J Pharm Sci , vol.49 , Issue.4 , pp. 679-698
    • Sjogren, E.1
  • 4
    • 85027949164 scopus 로고    scopus 로고
    • Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes
    • Takahashi M.B., et al. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes. Bioprocess Biosyst Eng 2015, 1-10.
    • (2015) Bioprocess Biosyst Eng , pp. 1-10
    • Takahashi, M.B.1
  • 5
    • 0032831506 scopus 로고    scopus 로고
    • Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships
    • Kaliszan R., et al. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships. J Chromatogr A 1999, 855(2):455-486.
    • (1999) J Chromatogr A , vol.855 , Issue.2 , pp. 455-486
    • Kaliszan, R.1
  • 6
    • 0037093737 scopus 로고    scopus 로고
    • Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives
    • Tham S., Agatonovic-Kustrin S. Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives. J Pharm Biomed Anal 2002, 28(3):581-590.
    • (2002) J Pharm Biomed Anal , vol.28 , Issue.3 , pp. 581-590
    • Tham, S.1    Agatonovic-Kustrin, S.2
  • 7
    • 84904344603 scopus 로고    scopus 로고
    • Cross-column prediction of gas-chromatographic retention indices of saturated esters
    • D'Archivio A.A., Maggi M.A., Ruggieri F. Cross-column prediction of gas-chromatographic retention indices of saturated esters. J Chromatogr A 2014.
    • (2014) J Chromatogr A
    • D'Archivio, A.A.1    Maggi, M.A.2    Ruggieri, F.3
  • 8
    • 84911477722 scopus 로고    scopus 로고
    • z) in LC-MS metabolite profiling
    • z) in LC-MS metabolite profiling. Phytochemistry 2014, 108:196-207.
    • (2014) Phytochemistry , vol.108 , pp. 196-207
    • Eugster, P.J.1
  • 9
    • 0033954592 scopus 로고    scopus 로고
    • Preformulation studies and characterization of the physicochemical properties of amorphous polymers using artificial neural networks
    • Ebube N.K., Owusu-Ababio G., Adeyeye C.M. Preformulation studies and characterization of the physicochemical properties of amorphous polymers using artificial neural networks. Int J Pharm 2000, 196(1):27-35.
    • (2000) Int J Pharm , vol.196 , Issue.1 , pp. 27-35
    • Ebube, N.K.1    Owusu-Ababio, G.2    Adeyeye, C.M.3
  • 10
    • 0032918303 scopus 로고    scopus 로고
    • The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms
    • Chen Y., et al. The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms. J Control Release 1999, 59(1):33-41.
    • (1999) J Control Release , vol.59 , Issue.1 , pp. 33-41
    • Chen, Y.1
  • 11
    • 23144462228 scopus 로고    scopus 로고
    • Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parameters of cytarabine liposomes
    • Subramanian N., Yajnik A., Murthy R.S.R. Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parameters of cytarabine liposomes. AAPS PharmSciTech 2004, 5(1):11-19.
    • (2004) AAPS PharmSciTech , vol.5 , Issue.1 , pp. 11-19
    • Subramanian, N.1    Yajnik, A.2    Murthy, R.S.R.3
  • 12
    • 79959481934 scopus 로고    scopus 로고
    • Application of artificial neural networks in optimizing the fatty alcohol concentration in the formulation of an O/W emulsion
    • Kumar K., Panpalia G., Priyadarshini S. Application of artificial neural networks in optimizing the fatty alcohol concentration in the formulation of an O/W emulsion. Acta Pharm 2011, 61(2):249-256.
    • (2011) Acta Pharm , vol.61 , Issue.2 , pp. 249-256
    • Kumar, K.1    Panpalia, G.2    Priyadarshini, S.3
  • 13
    • 84871646482 scopus 로고    scopus 로고
    • The use of artificial neural networks for optimizing polydispersity index (PDI) in nanoprecipitation process of acetaminophen in microfluidic devices
    • Aghajani M., Shahverdi A.R., Amani A. The use of artificial neural networks for optimizing polydispersity index (PDI) in nanoprecipitation process of acetaminophen in microfluidic devices. AAPS PharmSciTech 2012, 13(4):1293-1301.
    • (2012) AAPS PharmSciTech , vol.13 , Issue.4 , pp. 1293-1301
    • Aghajani, M.1    Shahverdi, A.R.2    Amani, A.3
  • 14
    • 42049110359 scopus 로고    scopus 로고
    • Optimization and evaluation of time-dependent tablets comprising an immediate and sustained release profile using artificial neural network
    • Xie H., et al. Optimization and evaluation of time-dependent tablets comprising an immediate and sustained release profile using artificial neural network. Drug Dev Ind Pharm 2008, 34(4):363-372.
    • (2008) Drug Dev Ind Pharm , vol.34 , Issue.4 , pp. 363-372
    • Xie, H.1
  • 15
    • 0032960016 scopus 로고    scopus 로고
    • Artificial neural networks applied to the in vitro-in vivo correlation of an extended-release formulation: initial trials and experience
    • Dowell J.A., et al. Artificial neural networks applied to the in vitro-in vivo correlation of an extended-release formulation: initial trials and experience. J Pharm Sci 1999, 88(1):154-160.
    • (1999) J Pharm Sci , vol.88 , Issue.1 , pp. 154-160
    • Dowell, J.A.1
  • 16
    • 33847193134 scopus 로고    scopus 로고
    • An investigation into the usefulness of generalized regression neural network analysis in the development of level A in vitro-in vivo correlation
    • Parojčić J., et al. An investigation into the usefulness of generalized regression neural network analysis in the development of level A in vitro-in vivo correlation. Eur J Pharm Sci 2007, 30(3):264-272.
    • (2007) Eur J Pharm Sci , vol.30 , Issue.3 , pp. 264-272
    • Parojčić, J.1
  • 17
    • 36849030787 scopus 로고    scopus 로고
    • Evaluation of in vitro in vivo correlations for dry powder inhaler delivery using artificial neural networks
    • De Matas M., et al. Evaluation of in vitro in vivo correlations for dry powder inhaler delivery using artificial neural networks. Eur J Pharm Sci 2008, 33(1):80-90.
    • (2008) Eur J Pharm Sci , vol.33 , Issue.1 , pp. 80-90
    • De Matas, M.1
  • 18
    • 78349310984 scopus 로고    scopus 로고
    • Predicting the clinical effect of a short acting bronchodilator in individual patients using artificial neural networks
    • De Matas M., et al. Predicting the clinical effect of a short acting bronchodilator in individual patients using artificial neural networks. Eur J Pharm Sci 2010, 41(5):707-715.
    • (2010) Eur J Pharm Sci , vol.41 , Issue.5 , pp. 707-715
    • De Matas, M.1
  • 19
    • 48149100781 scopus 로고    scopus 로고
    • In vitro-in vivo correlations of self-emulsifying drug delivery systems combining the dynamic lipolysis model and neuro-fuzzy networks
    • Fatouros D.G., et al. In vitro-in vivo correlations of self-emulsifying drug delivery systems combining the dynamic lipolysis model and neuro-fuzzy networks. Eur J Pharm Biopharm 2008, 69(3):887-898.
    • (2008) Eur J Pharm Biopharm , vol.69 , Issue.3 , pp. 887-898
    • Fatouros, D.G.1
  • 20
    • 84903300210 scopus 로고    scopus 로고
    • In vitro-in silico-in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: Nifedipine osmotic release tablets case study
    • Ilić M., et al. In vitro-in silico-in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: Nifedipine osmotic release tablets case study. Eur J Pharm Sci 2014, 62:212-218.
    • (2014) Eur J Pharm Sci , vol.62 , pp. 212-218
    • Ilić, M.1
  • 21
    • 77549088567 scopus 로고    scopus 로고
    • Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks
    • Paixão P., Gouveia L.F., Morais J.A. Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks. Eur J Pharm Sci 2010, 39(5):310-321.
    • (2010) Eur J Pharm Sci , vol.39 , Issue.5 , pp. 310-321
    • Paixão, P.1    Gouveia, L.F.2    Morais, J.A.3
  • 22
    • 84875673211 scopus 로고    scopus 로고
    • Generalized in vitro-in vivo relationship (IVIVR) model based on artificial neural networks
    • Mendyk A., et al. Generalized in vitro-in vivo relationship (IVIVR) model based on artificial neural networks. Drug Des Dev Ther 2013, 7:223.
    • (2013) Drug Des Dev Ther , vol.7 , pp. 223
    • Mendyk, A.1
  • 24
    • 33244467920 scopus 로고    scopus 로고
    • In silico prediction of blood-brain barrier permeability: an artificial neural network model
    • Garg P., Verma J. In silico prediction of blood-brain barrier permeability: an artificial neural network model. J Chem Inf Model 2006, 46(1):289-297.
    • (2006) J Chem Inf Model , vol.46 , Issue.1 , pp. 289-297
    • Garg, P.1    Verma, J.2
  • 25
    • 67649394120 scopus 로고    scopus 로고
    • A prediction model for blood-brain barrier permeation and analysis on its parameter biologically
    • Chen Y., et al. A prediction model for blood-brain barrier permeation and analysis on its parameter biologically. Comput Methods Programs Biomed 2009, 95(3):280-287.
    • (2009) Comput Methods Programs Biomed , vol.95 , Issue.3 , pp. 280-287
    • Chen, Y.1
  • 26
    • 84958625712 scopus 로고    scopus 로고
    • QSAR/QSPR as an application of artificial neural networks
    • Springer
    • Montañez-Godínez N., et al. QSAR/QSPR as an application of artificial neural networks. Artificial neural networks 2015, 319-333. Springer.
    • (2015) Artificial neural networks , pp. 319-333
    • Montañez-Godínez, N.1
  • 27
    • 0043146556 scopus 로고    scopus 로고
    • Application of neural networks in structure-activity relationships
    • Kövesdi I., et al. Application of neural networks in structure-activity relationships. Med Res Rev 1999, 19(3):249-269.
    • (1999) Med Res Rev , vol.19 , Issue.3 , pp. 249-269
    • Kövesdi, I.1
  • 28
    • 34548070746 scopus 로고    scopus 로고
    • Quantitative structure-property relationship study of retention time of some pesticides in gas chromatography
    • Hadjmohammadi M., Fatemi M., Kamel K. Quantitative structure-property relationship study of retention time of some pesticides in gas chromatography. J Chromatogr Sci 2007, 45(7):400-404.
    • (2007) J Chromatogr Sci , vol.45 , Issue.7 , pp. 400-404
    • Hadjmohammadi, M.1    Fatemi, M.2    Kamel, K.3
  • 29
    • 84920773866 scopus 로고    scopus 로고
    • Prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis
    • Vucicevic J., et al. Prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis. Eur J Pharm Sci 2015, 68:94-105.
    • (2015) Eur J Pharm Sci , vol.68 , pp. 94-105
    • Vucicevic, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.