메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL METHODS; COMPUTER NETWORKS; COMPUTER VISION; IMAGE RETRIEVAL; INFORMATION THEORY;

EID: 50649087214     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2007.4408965     Document Type: Conference Paper
Times cited : (265)

References (31)
  • 1
    • 0036538619 scopus 로고    scopus 로고
    • Shape matching and object recognition using shape contexts
    • S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. PAMI, 24(4):509-522, 2002.
    • (2002) PAMI , vol.24 , Issue.4 , pp. 509-522
    • Belongie, S.1    Malik, J.2    Puzicha, J.3
  • 3
    • 84932617867 scopus 로고    scopus 로고
    • Combining top-down and bottom-up segmentation
    • E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and bottom-up segmentation. CVPR Workshop, pages 46-46, 2004.
    • (2004) CVPR Workshop , pp. 46-46
    • Borenstein, E.1    Sharon, E.2    Ullman, S.3
  • 4
    • 35048865505 scopus 로고    scopus 로고
    • Learning to segment
    • E. Borenstein and S. Ullman. Learning to segment. ECCV, pages 315-328, 2004.
    • (2004) ECCV , pp. 315-328
    • Borenstein, E.1    Ullman, S.2
  • 5
    • 24144486461 scopus 로고    scopus 로고
    • A statistical model for general contextual object recognition
    • P. Carbonetto, N. de Freitas, and K. Barnard. A statistical model for general contextual object recognition. ECCV, 2004.
    • (2004) ECCV
    • Carbonetto, P.1    de Freitas, N.2    Barnard, K.3
  • 6
    • 24644524200 scopus 로고    scopus 로고
    • Visual categorization with bags of keypoints. Workshop on Statistical Learning in Computer Vision
    • G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints. Workshop on Statistical Learning in Computer Vision, ECCV, pages 1-22, 2004.
    • (2004) ECCV , pp. 1-22
    • Csurka, G.1    Bray, C.2    Dance, C.3    Fan, L.4
  • 7
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. CVPR, pages 524-531, 2005.
    • (2005) CVPR , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 8
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • L. Fei-Fei and P. Perona. One-shot learning of object categories. PAMI, 28(4):594-611, 2006.
    • (2006) PAMI , vol.28 , Issue.4 , pp. 594-611
    • Fei-Fei, L.1    Perona, P.2
  • 9
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. IJCV, 59(2):167-181, 2004.
    • (2004) IJCV , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 10
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1):55-79, 2005.
    • (2005) IJCV , vol.61 , Issue.1 , pp. 55-79
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 11
    • 33745839880 scopus 로고    scopus 로고
    • Learning object categories from google's image search
    • R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object categories from google's image search. ICCV, 2005.
    • (2005) ICCV
    • Fergus, R.1    Fei-Fei, L.2    Perona, P.3    Zisserman, A.4
  • 12
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. CVPR, 2:264-271, 2003.
    • (2003) CVPR , vol.2 , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 13
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42(1):177-196, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1 , pp. 177-196
    • Hofmann, T.1
  • 14
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 15
    • 0035507681 scopus 로고    scopus 로고
    • Scale, saliency and image description
    • T. Kadir and M. Brady. Scale, saliency and image description. Int'l Journal Computer Vision, 45(2):83-105, 2001.
    • (2001) Int'l Journal Computer Vision , vol.45 , Issue.2 , pp. 83-105
    • Kadir, T.1    Brady, M.2
  • 16
    • 50649100782 scopus 로고    scopus 로고
    • M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT. CVPR, pages 18-25, 2005.
    • M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT. CVPR, pages 18-25, 2005.
  • 17
    • 33646014576 scopus 로고    scopus 로고
    • Combined object categorization and segmentation with an implicit shape model
    • B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and segmentation with an implicit shape model. ECCV Workshop, 2004.
    • (2004) ECCV Workshop
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 18
    • 24644437018 scopus 로고    scopus 로고
    • Interleaved object categorization and segmentation
    • B. Leibe and B. Schiele. Interleaved object categorization and segmentation. BMVC, 2003.
    • (2003) BMVC
    • Leibe, B.1    Schiele, B.2
  • 19
    • 34548799026 scopus 로고    scopus 로고
    • Learning to combine top-down and bottom-up segmentation
    • A. Levin, Y. Weiss, and M. Vision. Learning to combine top-down and bottom-up segmentation. ECCV, 2006.
    • (2006) ECCV
    • Levin, A.1    Weiss, Y.2    Vision, M.3
  • 20
    • 38149060590 scopus 로고    scopus 로고
    • Semantic-shift for unsupervised object detection
    • D. Liu and T. Chen. Semantic-shift for unsupervised object detection. CVPR workshop, 2006.
    • (2006) CVPR workshop
    • Liu, D.1    Chen, T.2
  • 21
    • 0141596527 scopus 로고    scopus 로고
    • Estimating a dirichlet distribution
    • Technical report, Microsoft Research
    • T. Minka. Estimating a dirichlet distribution. Technical report, Microsoft Research. 5
    • Minka, T.1
  • 22
    • 13444280001 scopus 로고    scopus 로고
    • PLSA-based image auto-annotation: Constraining the latent space
    • F. Monay and D. Gatica-Perez. PLSA-based image auto-annotation: constraining the latent space. ACM Conf. Multimedia, 2004.
    • (2004) ACM Conf. Multimedia
    • Monay, F.1    Gatica-Perez, D.2
  • 23
    • 0033284915 scopus 로고    scopus 로고
    • Lowe. Object recognition from local scale-invariant features
    • D. Proc. Lowe. Object recognition from local scale-invariant features. Proc. Int'l Conf. Computer Vision, 1999.
    • (1999) Proc. Int'l Conf. Computer Vision
    • Proc, D.1
  • 24
    • 33845587625 scopus 로고    scopus 로고
    • Cosegmentation of image pairs by histogram matching?incorporating a global constraint into MRFs
    • C. Rother, V. Kolmogorov, T. Minka, and A. Blake. Cosegmentation of image pairs by histogram matching?incorporating a global constraint into MRFs. CVPR, 2006.
    • (2006) CVPR
    • Rother, C.1    Kolmogorov, V.2    Minka, T.3    Blake, A.4
  • 25
    • 33845596932 scopus 로고    scopus 로고
    • Using Multiple Segmentations to Discover Objects and their Extent in Image Collections
    • B. Russell, A. Efros, J. Sivic, W. Freeman, and A. Zisserman. Using Multiple Segmentations to Discover Objects and their Extent in Image Collections. CVPR, 2006.
    • (2006) CVPR
    • Russell, B.1    Efros, A.2    Sivic, J.3    Freeman, W.4    Zisserman, A.5
  • 26
    • 0035680897 scopus 로고    scopus 로고
    • Constructing models for content-based image retrieval
    • C. Schmid. Constructing models for content-based image retrieval. CVPR, 2:39-45, 2001.
    • (2001) CVPR , vol.2 , pp. 39-45
    • Schmid, C.1
  • 28
    • 33845579921 scopus 로고    scopus 로고
    • Extracting subimages of an unknown category from a set of images
    • S. Todorovic and N. Ahuja. Extracting subimages of an unknown category from a set of images. CVPR, 2006.
    • (2006) CVPR
    • Todorovic, S.1    Ahuja, N.2
  • 30
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. ICCV, 2:1800-1807, 2005.
    • (2005) ICCV , vol.2 , pp. 1800-1807
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 31
    • 33745948591 scopus 로고    scopus 로고
    • LOCUS: Learning object classes with unsupervised segmentation
    • J. Winn and N. Jojic. LOCUS: Learning object classes with unsupervised segmentation. ICCV, 2005.
    • (2005) ICCV
    • Winn, J.1    Jojic, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.