메뉴 건너뛰기




Volumn 33, Issue , 2017, Pages 41-56

Spatial anomaly detection in sensor networks using neighborhood information

Author keywords

Anomaly detection; Collaborative WSN; Sensor fusion; Sensor networks

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; DATA FUSION; EMBEDDED SYSTEMS; LEARNING SYSTEMS; PATTERN RECOGNITION; SENSOR DATA FUSION; SENSOR NETWORKS; SENSOR NODES; SIGNAL DETECTION;

EID: 84966421068     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2016.04.007     Document Type: Article
Times cited : (135)

References (73)
  • 1
    • 84925468152 scopus 로고    scopus 로고
    • The internet of thingsa survey of topics and trends
    • A. Whitmore, A. Agarwal, and L. Da Xu The internet of thingsa survey of topics and trends Inf. Syst. Front. 17 2 2015 261 274 10.1007/s10796-014-9489-2
    • (2015) Inf. Syst. Front. , vol.17 , Issue.2 , pp. 261-274
    • Whitmore, A.1    Agarwal, A.2    Da Xu, L.3
  • 2
    • 84867562909 scopus 로고    scopus 로고
    • A flexible building management framework based on wireless sensor and actuator networks
    • G. Fortino, A. Guerrieri, G.M.P. O'Hare, and A.G. Ruzzelli A flexible building management framework based on wireless sensor and actuator networks J. Netw. Comput. Appl. 35 6 2012 1934 1952 10.1016/j.jnca.2012.07.016
    • (2012) J. Netw. Comput. Appl. , vol.35 , Issue.6 , pp. 1934-1952
    • Fortino, G.1    Guerrieri, A.2    O'Hare, G.M.P.3    Ruzzelli, A.G.4
  • 3
    • 84874589529 scopus 로고    scopus 로고
    • Wireless sensor network applications: A study in environment monitoring system
    • International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012)
    • M.F. Othman, and K. Shazali Wireless sensor network applications: a study in environment monitoring system Proc. Eng. 41 2012 1204 1210 10.1016/j.proeng.2012.07.302 International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012)
    • (2012) Proc. Eng. , vol.41 , pp. 1204-1210
    • Othman, M.F.1    Shazali, K.2
  • 4
    • 84881316895 scopus 로고    scopus 로고
    • On energy efficiency in collaborative target tracking in wireless sensor network: A review
    • O. Demigha, W.-K. Hidouci, and T. Ahmed On energy efficiency in collaborative target tracking in wireless sensor network: a review Commun. Surv. Tut. IEEE 15 3 2013 1210 1222 10.1109/SURV.2012.042512.00030
    • (2013) Commun. Surv. Tut. IEEE , vol.15 , Issue.3 , pp. 1210-1222
    • Demigha, O.1    Hidouci, W.-K.2    Ahmed, T.3
  • 5
    • 4143115665 scopus 로고    scopus 로고
    • Effective management through prediction-based clustering approach in the next-generation ad hoc networks
    • S. Sivavakeesar, G. Pavlou, C. Bohoris, and A. Liotta Effective management through prediction-based clustering approach in the next-generation ad hoc networks Communications, 2004 IEEE International Conference on vol. 7 2004 4326 4330 10.1109/ICC.2004.1313364
    • (2004) Communications, 2004 IEEE International Conference on , vol.7 , pp. 4326-4330
    • Sivavakeesar, S.1    Pavlou, G.2    Bohoris, C.3    Liotta, A.4
  • 8
    • 84927926139 scopus 로고    scopus 로고
    • Collaborative wireless sensor networks: Architectures, algorithms and applications
    • G. Fortino, M. Bal, W. Li, and W. Shen Collaborative wireless sensor networks: architectures, algorithms and applications Inf. Fusion 22 2015 1 2 10.1016/j.inffus.2014.03.004
    • (2015) Inf. Fusion , vol.22 , pp. 1-2
    • Fortino, G.1    Bal, M.2    Li, W.3    Shen, W.4
  • 10
    • 84880983666 scopus 로고    scopus 로고
    • The cognitive net is coming
    • A. Liotta The cognitive net is coming IEEE Spect. 50 8 2013 26 31
    • (2013) IEEE Spect. , vol.50 , Issue.8 , pp. 26-31
    • Liotta, A.1
  • 11
    • 0036576792 scopus 로고    scopus 로고
    • Exploiting agent mobility for large-scale network monitoring
    • A. Liotta, G. Pavlou, and G. Knight Exploiting agent mobility for large-scale network monitoring IEEE Netw. 16 3 2002 7 15 10.1109/MNET.2002.1002994
    • (2002) IEEE Netw. , vol.16 , Issue.3 , pp. 7-15
    • Liotta, A.1    Pavlou, G.2    Knight, G.3
  • 13
    • 84881299497 scopus 로고    scopus 로고
    • Enabling effective programming and flexible management of efficient body sensor network applications
    • G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari Enabling effective programming and flexible management of efficient body sensor network applications IEEE Trans. Human Machine Syst. 43 1 2013 115 133 10.1109/TSMCC.2012.2215852
    • (2013) IEEE Trans. Human Machine Syst. , vol.43 , Issue.1 , pp. 115-133
    • Fortino, G.1    Giannantonio, R.2    Gravina, R.3    Kuryloski, P.4    Jafari, R.5
  • 14
    • 84858701770 scopus 로고    scopus 로고
    • Data stream forecasting for system fault prediction
    • A. Alzghoul, M. Löfstrand, and B. Backe Data stream forecasting for system fault prediction Comput. Indus. Eng. 62 4 2012 972 978 10.1016/j.cie.2011.12.023
    • (2012) Comput. Indus. Eng. , vol.62 , Issue.4 , pp. 972-978
    • Alzghoul, A.1    Löfstrand, M.2    Backe, B.3
  • 21
    • 57849130705 scopus 로고    scopus 로고
    • Anomaly-based network intrusion detection: Techniques, systems and challenges
    • P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez Anomaly-based network intrusion detection: techniques, systems and challenges Comput.Secur. 28 1-2 2009 18 28
    • (2009) Comput.Secur. , vol.28 , Issue.1-2 , pp. 18-28
    • Garcia-Teodoro, P.1    Diaz-Verdejo, J.2    Macia-Fernandez, G.3    Vazquez, E.4
  • 23
    • 58649111729 scopus 로고    scopus 로고
    • Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety
    • S. Budalakoti, A. Srivastava, and M. Otey Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety IEEE Trans. Systems Man Cybernetics Part C Appl. Rev. 39 1 2009 101 113
    • (2009) IEEE Trans. Systems Man Cybernetics Part C Appl. Rev. , vol.39 , Issue.1 , pp. 101-113
    • Budalakoti, S.1    Srivastava, A.2    Otey, M.3
  • 24
    • 84859212083 scopus 로고    scopus 로고
    • Ensemble based sensing anomaly detection in wireless sensor networks
    • D.-I. Curiac, and C. Volosencu Ensemble based sensing anomaly detection in wireless sensor networks Expert Systems with Applications 39 10 2012 9087 9096
    • (2012) Expert Systems with Applications , vol.39 , Issue.10 , pp. 9087-9096
    • Curiac, D.-I.1    Volosencu, C.2
  • 25
    • 84901627230 scopus 로고    scopus 로고
    • Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations
    • F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, M. Pichler, and H. Efendic Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations Inf. Fusion 20 2014 272 291 10.1016/j.inffus.2014.03.006
    • (2014) Inf. Fusion , vol.20 , pp. 272-291
    • Serdio, F.1    Lughofer, E.2    Pichler, K.3    Buchegger, T.4    Pichler, M.5    Efendic, H.6
  • 28
    • 84912542262 scopus 로고    scopus 로고
    • Machine learning in wireless sensor networks: Algorithms, strategies, and applications
    • M. Abu Alsheikh, S. Lin, D. Niyato, and H.-P. Tan Machine learning in wireless sensor networks: algorithms, strategies, and applications Commun. Surv. Tut. IEEE 16 4 2014 1996 2018 10.1109/COMST.2014.2320099
    • (2014) Commun. Surv. Tut. IEEE , vol.16 , Issue.4 , pp. 1996-2018
    • Abu Alsheikh, M.1    Lin, S.2    Niyato, D.3    Tan, H.-P.4
  • 31
    • 84907599702 scopus 로고    scopus 로고
    • A framework for collaborative computing and multi-sensor data fusion in body sensor networks
    • G. Fortino, S. Galzarano, R. Gravina, and W. Li A framework for collaborative computing and multi-sensor data fusion in body sensor networks Inf. Fusion 22 2015 50 70 10.1016/j.inffus.2014.03.005
    • (2015) Inf. Fusion , vol.22 , pp. 50-70
    • Fortino, G.1    Galzarano, S.2    Gravina, R.3    Li, W.4
  • 33
    • 35348828484 scopus 로고    scopus 로고
    • Ensemble methods for anomaly detection and distributed intrusion detection in mobile ad-hoc networks
    • J. Cabrera, C. Gutiérrez, and R. Mehra Ensemble methods for anomaly detection and distributed intrusion detection in mobile ad-hoc networks Inf. Fusion 9 1 2008 96 119
    • (2008) Inf. Fusion , vol.9 , Issue.1 , pp. 96-119
    • Cabrera, J.1    Gutiérrez, C.2    Mehra, R.3
  • 34
    • 84875522445 scopus 로고    scopus 로고
    • Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modelling
    • H. Kumarage, I. Khalil, Z. Tari, and A. Zomaya Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modelling J. Parallel Distrib. Comput. 73 6 2013 790 806
    • (2013) J. Parallel Distrib. Comput. , vol.73 , Issue.6 , pp. 790-806
    • Kumarage, H.1    Khalil, I.2    Tari, Z.3    Zomaya, A.4
  • 36
  • 37
    • 53149154509 scopus 로고    scopus 로고
    • Distributed average consensus with dithered quantization
    • T.C. Aysal, M.J. Coates, and M.G. Rabbat Distributed average consensus with dithered quantization IEEE Trans. Signal Process. 56 10 2008 4905 4918
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.10 , pp. 4905-4918
    • Aysal, T.C.1    Coates, M.J.2    Rabbat, M.G.3
  • 42
    • 84891852242 scopus 로고    scopus 로고
    • Local outlier detection reconsidered: A generalized view on locality with applications to spatial, video, and network outlier detection
    • E. Schubert, A. Zimek, and H.-P. Kriegel Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection Data Mining Knowl. Disc. 28 1 2014 190 237
    • (2014) Data Mining Knowl. Disc. , vol.28 , Issue.1 , pp. 190-237
    • Schubert, E.1    Zimek, A.2    Kriegel, H.-P.3
  • 44
    • 33645548899 scopus 로고    scopus 로고
    • Slom: A new measure for local spatial outliers
    • S. Chawla, and P. Sun Slom: a new measure for local spatial outliers Knowl. Inf. Syst. 9 4 2006 412 429
    • (2006) Knowl. Inf. Syst. , vol.9 , Issue.4 , pp. 412-429
    • Chawla, S.1    Sun, P.2
  • 46
  • 47
    • 84883396826 scopus 로고    scopus 로고
    • Efficient density based techniques for anomalous data detection in wireless sensor networks
    • N. Chitradevi, V. Palanisamy, K. Baskaran, and K. Swathithya Efficient density based techniques for anomalous data detection in wireless sensor networks J. Appl. Sci. Eng. 16 2 2013 211223
    • (2013) J. Appl. Sci. Eng. , vol.16 , Issue.2 , pp. 211223
    • Chitradevi, N.1    Palanisamy, V.2    Baskaran, K.3    Swathithya, K.4
  • 48
    • 84896971289 scopus 로고    scopus 로고
    • A hierarchical framework using approximated local outlier factor for efficient anomaly detection
    • Xu L., Yeh Y.-R., Lee Y.-J., and Li J. A hierarchical framework using approximated local outlier factor for efficient anomaly detection Proc. Comput. Sci. 19 2013 1174 1181
    • (2013) Proc. Comput. Sci. , vol.19 , pp. 1174-1181
    • Xu, L.1    Yeh, Y.-R.2    Lee, Y.-J.3    Li, J.4
  • 49
    • 34347262454 scopus 로고    scopus 로고
    • Localized outlying and boundary data detection in sensor networks
    • W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, and P. Deng Localized outlying and boundary data detection in sensor networks IEEE Trans.Knowl. Data Eng. 19 8 2007 1145 1157
    • (2007) IEEE Trans.Knowl. Data Eng. , vol.19 , Issue.8 , pp. 1145-1157
    • Wu, W.1    Cheng, X.2    Ding, M.3    Xing, K.4    Liu, F.5    Deng, P.6
  • 52
    • 84862769403 scopus 로고    scopus 로고
    • Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison
    • Service Delivery Management in Broadband Networks
    • A.M. Zungeru, L.-M. Ang, and K.P. Seng Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison J. Netw. Comput.r Appl. 35 5 2012 1508 1536 10.1016/j.jnca.2012.03.004 Service Delivery Management in Broadband Networks
    • (2012) J. Netw. Comput.r Appl. , vol.35 , Issue.5 , pp. 1508-1536
    • Zungeru, A.M.1    Ang, L.-M.2    Seng, K.P.3
  • 53
    • 84875691648 scopus 로고    scopus 로고
    • Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine
    • Y. Zhang, N. Meratnia, and P.J. Havinga Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine Ad hoc Netw. 11 3 2013 1062 1074
    • (2013) Ad Hoc Netw. , vol.11 , Issue.3 , pp. 1062-1074
    • Zhang, Y.1    Meratnia, N.2    Havinga, P.J.3
  • 57
    • 84960803783 scopus 로고    scopus 로고
    • Ensembles of incremental learners to detect anomalies in ad hoc sensor networks
    • Special Issue on Big Data Inspired Data Sensing, Processing and Networking Technologies
    • H.H. Bosman, G. Iacca, A. Tejada, H.J. Wörtche, and A. Liotta Ensembles of incremental learners to detect anomalies in ad hoc sensor networks Ad Hoc Netw. 35 2015 14 36 10.1016/j.adhoc.2015.07.013 Special Issue on Big Data Inspired Data Sensing, Processing and Networking Technologies
    • (2015) Ad Hoc Netw. , vol.35 , pp. 14-36
    • Bosman, H.H.1    Iacca, G.2    Tejada, A.3    Wörtche, H.J.4    Liotta, A.5
  • 59
    • 84916231379 scopus 로고    scopus 로고
    • Modelling and Simulation of Diffusive Processes
    • Springer International Publishing Switzerland
    • S. Basu, and N. Kumar Modelling and Simulation of Diffusive Processes Simulation Foundations, Methods and Applications 2014 Springer International Publishing Switzerland 10.1007/978-3-319-05657-9
    • (2014) Simulation Foundations, Methods and Applications
    • Basu, S.1    Kumar, N.2
  • 60
    • 84921644888 scopus 로고    scopus 로고
    • Internet and Distributed Computing Systems
    • Calabria, Italy, September 22-24, 2014. Proceedings, Springer International Publishing, Cham
    • F. Cauteruccio, G. Fortino, A. Guerrieri, G. Terracina, Internet and Distributed Computing Systems: 7th International Conference, IDCS 2014, Calabria, Italy, September 22-24, 2014. Proceedings, Springer International Publishing, Cham, pp. 383-395. doi: 10.1007/978-3-319-11692-1-33.
    • 7th International Conference, IDCS 2014 , pp. 383-395
    • Cauteruccio, F.1    Fortino, G.2    Guerrieri, A.3    Terracina, G.4
  • 62
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • J. Lee Rodgers, and W.A. Nicewander Thirteen ways to look at the correlation coefficient Am. Statist. 42 1 1988 59 66
    • (1988) Am. Statist. , vol.42 , Issue.1 , pp. 59-66
    • Lee Rodgers, J.1    Nicewander, W.A.2
  • 63
    • 0000650258 scopus 로고
    • Averaging correlation coefficients: Should fisher's z transformation be used?
    • N.C. Silver, and W.P. Dunlap Averaging correlation coefficients: should fisher's z transformation be used? J. Appl. Psychol. 72 1 1987 146
    • (1987) J. Appl. Psychol. , vol.72 , Issue.1 , pp. 146
    • Silver, N.C.1    Dunlap, W.P.2
  • 64
    • 84919487694 scopus 로고    scopus 로고
    • Entropy, complexity, and spatial information
    • M. Batty, R. Morphet, P. Masucci, and K. Stanilov Entropy, complexity, and spatial information J. Geograph. Syst. 16 4 2014 363 385 10.1007/s10109-014-0202-2
    • (2014) J. Geograph. Syst. , vol.16 , Issue.4 , pp. 363-385
    • Batty, M.1    Morphet, R.2    Masucci, P.3    Stanilov, K.4
  • 68
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Y.-H. Pao, G.-H. Park, and D.J. Sobajic Learning and generalization characteristics of the random vector functional-link net Neurocomputing 6 2 1994 163 180
    • (1994) Neurocomputing , vol.6 , Issue.2 , pp. 163-180
    • Pao, Y.-H.1    Park, G.-H.2    Sobajic, D.J.3
  • 69
    • 78049526879 scopus 로고    scopus 로고
    • Online segmentation of time series based on polynomial least-squares approximations
    • E. Fuchs, T. Gruber, J. Nitschke, and B. Sick Online segmentation of time series based on polynomial least-squares approximations IEEE Trans.Pattern Anal. Mach. Intell. 32 12 2010 2232 2245
    • (2010) IEEE Trans.Pattern Anal. Mach. Intell. , vol.32 , Issue.12 , pp. 2232-2245
    • Fuchs, E.1    Gruber, T.2    Nitschke, J.3    Sick, B.4
  • 72
    • 84856627931 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and f-factor to roc, informedness, markedness & correlation
    • D.M. Powers Evaluation: from precision, recall and f-factor to roc, informedness, markedness & correlation Evaluation 2007
    • (2007) Evaluation
    • Powers, D.M.1
  • 73
    • 84941871856 scopus 로고
    • The Kolmogorov-Smirnov test for goodness of fit
    • F.J. Massey Jr The Kolmogorov-Smirnov test for goodness of fit J. Am.Statist. Assoc. 46 253 1951 68 78
    • (1951) J. Am.Statist. Assoc. , vol.46 , Issue.253 , pp. 68-78
    • Massey, F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.