메뉴 건너뛰기




Volumn 35, Issue , 2015, Pages 14-36

Ensembles of incremental learners to detect anomalies in ad hoc sensor networks

Author keywords

Anomaly detection; Ensemble methods; Incremental learning; Online learning; Wireless sensor networks

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; E-LEARNING; EMBEDDED SYSTEMS; INTRUSION DETECTION; LEARNING SYSTEMS; ONLINE SYSTEMS; SIGNAL DETECTION; SOCIAL NETWORKING (ONLINE); SYSTEMS ENGINEERING; WIRELESS AD HOC NETWORKS; WIRELESS SENSOR NETWORKS;

EID: 84960803783     PISSN: 15708705     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.adhoc.2015.07.013     Document Type: Article
Times cited : (75)

References (77)
  • 1
    • 84861997111 scopus 로고    scopus 로고
    • Internet of things: Vision, applications and research challenges
    • D. Miorandi, S. Sicari, F.D. Pellegrini, and I. Chlamtac Internet of things: vision, applications and research challenges Ad Hoc Netw. 10 7 2012 1497 1516
    • (2012) Ad Hoc Netw. , vol.10 , Issue.7 , pp. 1497-1516
    • Miorandi, D.1    Sicari, S.2    Pellegrini, F.D.3    Chlamtac, I.4
  • 2
    • 84876943063 scopus 로고    scopus 로고
    • Internet of things (iot): A vision, architectural elements, and future directions
    • J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami Internet of things (iot): a vision, architectural elements, and future directions Future Gen. Comput. Syst. 29 7 2013 1645 1660
    • (2013) Future Gen. Comput. Syst. , vol.29 , Issue.7 , pp. 1645-1660
    • Gubbi, J.1    Buyya, R.2    Marusic, S.3    Palaniswami, M.4
  • 4
    • 70350417962 scopus 로고    scopus 로고
    • Deploying a wireless sensor network in Iceland
    • Springer
    • K. Martinez, J.K. Hart, and R. Ong Deploying a wireless sensor network in iceland GeoSensor Networks 2009 Springer 131 137
    • (2009) GeoSensor Networks , pp. 131-137
    • Martinez, K.1    Hart, J.K.2    Ong, R.3
  • 5
    • 84988250656 scopus 로고    scopus 로고
    • Design of a wireless sensor network for structural health monitoring of bridges
    • S.C. Mukhopadhyay, J.-A. Jiang, Smart Sensors, Measurement and Instrumentation, vol. 3 Springer Berlin/Heidelberg
    • M. Reyer, S. Hurlebaus, J. Mander, and O. Ozbulut Design of a wireless sensor network for structural health monitoring of bridges S.C. Mukhopadhyay, J.-A. Jiang, Wireless Sensor Networks and Ecological Monitoring Smart Sensors, Measurement and Instrumentation, vol. 3 2013 Springer Berlin/Heidelberg 195 216
    • (2013) Wireless Sensor Networks and Ecological Monitoring , pp. 195-216
    • Reyer, M.1    Hurlebaus, S.2    Mander, J.3    Ozbulut, O.4
  • 8
    • 77956882701 scopus 로고    scopus 로고
    • Wireless sensor networks for healthcare: A survey
    • H. Alemdar, and C. Ersoy Wireless sensor networks for healthcare: a survey Comput. Netw. 54 15 2010 2688 2710
    • (2010) Comput. Netw. , vol.54 , Issue.15 , pp. 2688-2710
    • Alemdar, H.1    Ersoy, C.2
  • 10
    • 84885462061 scopus 로고    scopus 로고
    • Wireless sensor network anomalies: Diagnosis and detection strategies
    • R. Jurdak, X. Wang, O. Obst, and P. Valencia Wireless sensor network anomalies: diagnosis and detection strategies Intell.-Based Syst. Eng. 10 2011 309 325
    • (2011) Intell.-Based Syst. Eng. , vol.10 , pp. 309-325
    • Jurdak, R.1    Wang, X.2    Obst, O.3    Valencia, P.4
  • 11
    • 84929570622 scopus 로고    scopus 로고
    • The internet of things: A survey from the data-centric perspective
    • Springer
    • C.C. Aggarwal, N. Ashish, and A. Sheth The internet of things: a survey from the data-centric perspective Managing and Mining Sensor Data 2013 Springer 383 428
    • (2013) Managing and Mining Sensor Data , pp. 383-428
    • Aggarwal, C.C.1    Ashish, N.2    Sheth, A.3
  • 13
    • 77957699390 scopus 로고    scopus 로고
    • Online anomaly detection for sensor systems: A simple and efficient approach
    • Y. Yao, A. Sharma, L. Golubchik, and R. Govindan Online anomaly detection for sensor systems: a simple and efficient approach Perform. Evaluat. 67 11 2010 1059 1075
    • (2010) Perform. Evaluat. , vol.67 , Issue.11 , pp. 1059-1075
    • Yao, Y.1    Sharma, A.2    Golubchik, L.3    Govindan, R.4
  • 14
    • 35348828484 scopus 로고    scopus 로고
    • Ensemble methods for anomaly detection and distributed intrusion detection in mobile ad-hoc networks
    • J. Cabrera, C. Gutiérrez, and R. Mehra Ensemble methods for anomaly detection and distributed intrusion detection in mobile ad-hoc networks Inform. Fusion 9 1 2008 96 119
    • (2008) Inform. Fusion , vol.9 , Issue.1 , pp. 96-119
    • Cabrera, J.1    Gutiérrez, C.2    Mehra, R.3
  • 18
    • 84912542262 scopus 로고    scopus 로고
    • Machine learning in wireless sensor networks: Algorithms, strategies, and applications
    • M.A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan Machine learning in wireless sensor networks: algorithms, strategies, and applications IEEE Commun. Surv. Tutorials 16 4 2014 1996 2018
    • (2014) IEEE Commun. Surv. Tutorials , vol.16 , Issue.4 , pp. 1996-2018
    • Alsheikh, M.A.1    Lin, S.2    Niyato, D.3    Tan, H.-P.4
  • 19
    • 85032752026 scopus 로고    scopus 로고
    • Distributed learning in wireless sensor networks
    • J. Predd, S. Kulkarni, and H. Poor Distributed learning in wireless sensor networks IEEE Signal Process. Mag. 23 4 2006 56 69
    • (2006) IEEE Signal Process. Mag. , vol.23 , Issue.4 , pp. 56-69
    • Predd, J.1    Kulkarni, S.2    Poor, H.3
  • 20
    • 77953937223 scopus 로고    scopus 로고
    • How distributed data mining tasks can thrive as knowledge services
    • D. Talia, and P. Trunfio How distributed data mining tasks can thrive as knowledge services Commun. ACM 53 7 2010 132 137
    • (2010) Commun. ACM , vol.53 , Issue.7 , pp. 132-137
    • Talia, D.1    Trunfio, P.2
  • 21
    • 84888060174 scopus 로고    scopus 로고
    • Distributed optimization in wireless sensor networks: An island-model framework
    • G. Iacca Distributed optimization in wireless sensor networks: an island-model framework Soft Comput. 17 12 2013 2257 2277
    • (2013) Soft Comput. , vol.17 , Issue.12 , pp. 2257-2277
    • Iacca, G.1
  • 22
    • 84880983666 scopus 로고    scopus 로고
    • The cognitive net is coming
    • A. Liotta The cognitive net is coming IEEE Spectr. 50 8 2013 26 31
    • (2013) IEEE Spectr. , vol.50 , Issue.8 , pp. 26-31
    • Liotta, A.1
  • 23
    • 84883331959 scopus 로고    scopus 로고
    • Cognitive radio wireless sensor networks: Applications, challenges and research trends
    • G.P. Joshi, S.Y. Nam, and S.W. Kim Cognitive radio wireless sensor networks: applications, challenges and research trends Sensors 13 9 2013 11196 11228
    • (2013) Sensors , vol.13 , Issue.9 , pp. 11196-11228
    • Joshi, G.P.1    Nam, S.Y.2    Kim, S.W.3
  • 26
    • 84960824535 scopus 로고    scopus 로고
    • Regression in sensor networks: Training distributively with alternating projections
    • International Society for Optics and Photonics
    • J.B. Predd, S.R. Kulkarni, and H.V. Poor Regression in sensor networks: training distributively with alternating projections Optics & Photonics 2005 2005 International Society for Optics and Photonics
    • (2005) Optics & Photonics 2005
    • Predd, J.B.1    Kulkarni, S.R.2    Poor, H.V.3
  • 30
    • 84875522445 scopus 로고    scopus 로고
    • Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modelling
    • H. Kumarage, I. Khalil, Z. Tari, and A. Zomaya Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modelling J. Parallel Distrib. Comput. 73 6 2013 790 806
    • (2013) J. Parallel Distrib. Comput. , vol.73 , Issue.6 , pp. 790-806
    • Kumarage, H.1    Khalil, I.2    Tari, Z.3    Zomaya, A.4
  • 36
    • 84936859064 scopus 로고    scopus 로고
    • Individual movement behaviour in secure physical environments: Modeling and detection of suspicious activity
    • L. Cao, P.S. Yu, Springer London
    • R. Biuk-Aghai, Y.-W. Si, S. Fong, and P.-F. Yan Individual movement behaviour in secure physical environments: modeling and detection of suspicious activity L. Cao, P.S. Yu, Behavior Computing 2012 Springer London 241 253
    • (2012) Behavior Computing , pp. 241-253
    • Biuk-Aghai, R.1    Si, Y.-W.2    Fong, S.3    Yan, P.-F.4
  • 40
    • 84864396512 scopus 로고    scopus 로고
    • An assessment of independent component analysis for detection of military targets from hyperspectral images
    • K. Tiwari, M. Arora, and D. Singh An assessment of independent component analysis for detection of military targets from hyperspectral images Int. J. Appl. Earth Observ. Geoinform. 13 5 2011 730 740
    • (2011) Int. J. Appl. Earth Observ. Geoinform. , vol.13 , Issue.5 , pp. 730-740
    • Tiwari, K.1    Arora, M.2    Singh, D.3
  • 42
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean, and S. Ghemawat Mapreduce: simplified data processing on large clusters Commun. ACM 51 1 2008 107 113
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 44
  • 45
    • 77955082590 scopus 로고    scopus 로고
    • Outlier detection techniques for wireless sensor networks: A survey
    • Y. Zhang, N. Meratnia, and P. Havinga Outlier detection techniques for wireless sensor networks: a survey IEEE Commun. Surv. Tutorials 12 2 2010 159 170
    • (2010) IEEE Commun. Surv. Tutorials , vol.12 , Issue.2 , pp. 159-170
    • Zhang, Y.1    Meratnia, N.2    Havinga, P.3
  • 47
    • 84859212083 scopus 로고    scopus 로고
    • Ensemble based sensing anomaly detection in wireless sensor networks
    • D.-I. Curiac, and C. Volosencu Ensemble based sensing anomaly detection in wireless sensor networks Expert Syst. Appl. 39 10 2012 9087 9096
    • (2012) Expert Syst. Appl. , vol.39 , Issue.10 , pp. 9087-9096
    • Curiac, D.-I.1    Volosencu, C.2
  • 50
    • 0014814475 scopus 로고
    • Least-squares estimation: From Gauss to Kalman
    • H. Sorenson Least-squares estimation: from Gauss to Kalman IEEE Spectrum 7 7 1970 63 68
    • (1970) IEEE Spectrum , vol.7 , Issue.7 , pp. 63-68
    • Sorenson, H.1
  • 51
    • 78049270395 scopus 로고    scopus 로고
    • Online clustering algorithms and reinforcement learning
    • Studies in Computational Intelligence Springer Berlin/Heidelberg
    • W. Barbakh, Y. Wu, and C. Fyfe Online clustering algorithms and reinforcement learning Non-Standard Parameter Adaptation for Exploratory Data Analysis Studies in Computational Intelligence 249 2009 Springer Berlin/Heidelberg 85 108
    • (2009) Non-Standard Parameter Adaptation for Exploratory Data Analysis , vol.249 , pp. 85-108
    • Barbakh, W.1    Wu, Y.2    Fyfe, C.3
  • 52
    • 77950915046 scopus 로고    scopus 로고
    • Decentralized learning in wireless sensor networks
    • Springer Berlin/Heidelberg
    • M. Mihaylov, K. Tuyls, and A. Nowé Decentralized learning in wireless sensor networks Lecture Notes in Computer Science 5924 2010 Springer Berlin/Heidelberg 60 73
    • (2010) Lecture Notes in Computer Science , vol.5924 , pp. 60-73
    • Mihaylov, M.1    Tuyls, K.2    Nowé, A.3
  • 54
    • 84880481501 scopus 로고    scopus 로고
    • Fault tolerant decentralised K-Means clustering for asynchronous large-scale networks
    • G.D. Fatta, F. Blasa, S. Cafiero, and G. Fortino Fault tolerant decentralised K-Means clustering for asynchronous large-scale networks J. Parallel Distrib. Comput. 73 3 2013 317 329
    • (2013) J. Parallel Distrib. Comput. , vol.73 , Issue.3 , pp. 317-329
    • Fatta, G.D.1    Blasa, F.2    Cafiero, S.3    Fortino, G.4
  • 58
    • 0026203998 scopus 로고
    • A novel approach for stabilizing recursive least squares filters
    • G.E. Bottomley A novel approach for stabilizing recursive least squares filters IEEE Trans. Signal Process. 39 8 1991 1770 1779
    • (1991) IEEE Trans. Signal Process. , vol.39 , Issue.8 , pp. 1770-1779
    • Bottomley, G.E.1
  • 59
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko Approximation by superpositions of a sigmoidal function Math. Control, Signals Syst. 2 4 1989 303 314
    • (1989) Math. Control, Signals Syst. , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 61
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Y.-H. Pao, G.-H. Park, and D.J. Sobajic Learning and generalization characteristics of the random vector functional-link net Neurocomputing 6 2 1994 163 180
    • (1994) Neurocomputing , vol.6 , Issue.2 , pp. 163-180
    • Pao, Y.-H.1    Park, G.-H.2    Sobajic, D.J.3
  • 63
    • 84929521587 scopus 로고    scopus 로고
    • Extreme learning machine: Algorithm, theory and applications
    • S. Ding, H. Zhao, Y. Zhang, X. Xu, and R. Nie Extreme learning machine: algorithm, theory and applications Artif. Intell. Rev. 2013 1 13
    • (2013) Artif. Intell. Rev. , pp. 1-13
    • Ding, S.1    Zhao, H.2    Zhang, Y.3    Xu, X.4    Nie, R.5
  • 64
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan A fast and accurate online sequential learning algorithm for feedforward networks IEEE Trans. Neural Netw. 17 6 2006 1411 1423
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.-Y.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 65
    • 78049526879 scopus 로고    scopus 로고
    • Online segmentation of time series based on polynomial least-squares approximations
    • E. Fuchs, T. Gruber, J. Nitschke, and B. Sick Online segmentation of time series based on polynomial least-squares approximations IEEE Trans. Pattern Anal. Mach. Intell. 32 12 2010 2232 2245
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.12 , pp. 2232-2245
    • Fuchs, E.1    Gruber, T.2    Nitschke, J.3    Sick, B.4
  • 66
    • 84946637626 scopus 로고
    • Control chart tests based on geometric moving averages
    • S. Roberts Control chart tests based on geometric moving averages Technometrics 1 3 1959 239 250
    • (1959) Technometrics , vol.1 , Issue.3 , pp. 239-250
    • Roberts, S.1
  • 68
    • 0030735959 scopus 로고    scopus 로고
    • An introduction to multisensor data fusion
    • D. Hall, and J. Llinas An introduction to multisensor data fusion Proc. IEEE 85 1 1997 6 23
    • (1997) Proc. IEEE , vol.85 , Issue.1 , pp. 6-23
    • Hall, D.1    Llinas, J.2
  • 69
    • 84904384520 scopus 로고    scopus 로고
    • Ensembles for unsupervised outlier detection: Challenges and research questions a position paper
    • A. Zimek, R.J. Campello, and J. Sander Ensembles for unsupervised outlier detection: challenges and research questions a position paper ACM SIGKDD Explorations Newsletter 15 1 2014 11 22
    • (2014) ACM SIGKDD Explorations Newsletter , vol.15 , Issue.1 , pp. 11-22
    • Zimek, A.1    Campello, R.J.2    Sander, J.3
  • 70
    • 40949142299 scopus 로고
    • An economic theory of political action in a democracy
    • A. Downs An economic theory of political action in a democracy J. Pol. Econ. 65 1957 135 150 10.1086/257897
    • (1957) J. Pol. Econ. , vol.65 , pp. 135-150
    • Downs, A.1
  • 74
    • 77954025800 scopus 로고    scopus 로고
    • Sensor faults: Detection methods and prevalence in real-world datasets
    • A.B. Sharma, L. Golubchik, and R. Govindan Sensor faults: detection methods and prevalence in real-world datasets ACM Trans. Sens. Netw. 6 3 2010
    • (2010) ACM Trans. Sens. Netw. , vol.6 , Issue.3
    • Sharma, A.B.1    Golubchik, L.2    Govindan, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.