메뉴 건너뛰기




Volumn 2016, Issue 4, 2016, Pages

Diversity improves performance in excitable networks

Author keywords

Criticality; Diversity; Intensity coding; Nonlinear computation; Sensory systems

Indexed keywords

EXCITABILITY; MODEL; SENSORY SYSTEM; STIMULUS;

EID: 84966283654     PISSN: None     EISSN: 21678359     Source Type: Journal    
DOI: 10.7717/peerj.1912     Document Type: Article
Times cited : (20)

References (65)
  • 1
    • 38849180043 scopus 로고    scopus 로고
    • Dynamic range of hypercubic stochastic excitable media
    • Assis VRV, Copelli M. 2008. Dynamic range of hypercubic stochastic excitable media. Physical Review E 77:011923 DOI 10.1103/PhysRevE.77.011923.
    • (2008) Physical Review E , vol.77
    • Assis, V.R.V.1    Copelli, M.2
  • 2
    • 84917692654 scopus 로고    scopus 로고
    • Heterogeneity of heterogeneities in neuronal networks
    • Baroni F, Mazzoni A. 2014. Heterogeneity of heterogeneities in neuronal networks. Frontiers in Computational Neuroscience 8:161 DOI 10.3389/fncom.2014.00161.
    • (2014) Frontiers in Computational Neuroscience , vol.8 , pp. 161
    • Baroni, F.1    Mazzoni, A.2
  • 3
    • 84867708981 scopus 로고    scopus 로고
    • Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization
    • Burton SD, Ermentrout GB, Urban NN. 2012. Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization. Journal of Neurophys-iology 108:2115-2133 DOI 10.1152/jn.00362.2012.
    • (2012) Journal of Neurophys-iology , vol.108 , pp. 2115-2133
    • Burton, S.D.1    Ermentrout, G.B.2    Urban, N.N.3
  • 4
    • 0028175401 scopus 로고
    • Direct modulation by Ca2C-calmodulin of cyclic nucleotideactivated channel of rat olfactory receptor neurons
    • Chen TY, Yau KW. 1994. Direct modulation by Ca2C-calmodulin of cyclic nucleotideactivated channel of rat olfactory receptor neurons. Nature 368:545-548 DOI 10.1038/368545a0.
    • (1994) Nature , vol.368 , pp. 545-548
    • Chen, T.Y.1    Yau, K.W.2
  • 5
    • 77957565867 scopus 로고    scopus 로고
    • Emergent complex neural dynamics
    • Chialvo DR. 2010. Emergent complex neural dynamics. Nature Physics 6:744-750 DOI 10.1038/nphys1803.
    • (2010) Nature Physics , vol.6 , pp. 744-750
    • Chialvo, D.R.1
  • 6
    • 84935922174 scopus 로고    scopus 로고
    • Commentary: feedback stabilizes propagation of synchronous spiking in cortical neural networks
    • Claverol-Tinturé E, Gross G. 2015. Commentary: feedback stabilizes propagation of synchronous spiking in cortical neural networks. Frontiers in Computational Neuroscience 9:71 DOI 10.3389/fncom.2015.00071.
    • (2015) Frontiers in Computational Neuroscience , vol.9 , pp. 71
    • Claverol-Tinturé, E.1    Gross, G.2
  • 7
    • 0033208607 scopus 로고    scopus 로고
    • Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: a theoretical study
    • Cleland TA, Linster C. 1999. Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: a theoretical study. Neural Computation 11:1673-1690 DOI 10.1162/089976699300016188.
    • (1999) Neural Computation , vol.11 , pp. 1673-1690
    • Cleland, T.A.1    Linster, C.2
  • 8
    • 84921462675 scopus 로고    scopus 로고
    • Double percolation phase transition in clustered complex networks
    • Colomer-de Simón P, Boguñá M. 2014. Double percolation phase transition in clustered complex networks. Physical Review X 4:041020.
    • (2014) Physical Review X , vol.4
    • Colomer-de Simón, P.1    Boguñá, M.2
  • 9
    • 33947419702 scopus 로고    scopus 로고
    • Physics of psychophysics: it is critical to sense
    • Copelli M. 2007. Physics of psychophysics: it is critical to sense. AIP Conference Proceed-ings 887:13-20 DOI 10.1063/1.2709581.
    • (2007) AIP Conference Proceed-ings , vol.887 , pp. 13-20
    • Copelli, M.1
  • 11
    • 22044436405 scopus 로고    scopus 로고
    • Complexity in strongly correlated electronic systems
    • Dagotto E. 2005. Complexity in strongly correlated electronic systems. Science 309:257-262 DOI 10.1126/science.1107559.
    • (2005) Science , vol.309 , pp. 257-262
    • Dagotto, E.1
  • 12
    • 79961051687 scopus 로고    scopus 로고
    • Enhancing neural-network performance via assortativity
    • De Franciscis S, Johnson S, Torres JJ. 2011. Enhancing neural-network performance via assortativity. Physical Review E 83:036114 DOI 10.1103/PhysRevE.83.036114.
    • (2011) Physical Review E , vol.83
    • De Franciscis, S.1    Johnson, S.2    Torres, J.J.3
  • 14
    • 84936072147 scopus 로고    scopus 로고
    • Collaborating with people like me: ethnic coauthorship within the united states
    • Freeman RB, Huang W. 2015. Collaborating with people like me: ethnic coauthorship within the united states. Journal of Labor Economics 33:S289-S318 DOI 10.1086/678973.
    • (2015) Journal of Labor Economics , vol.33 , pp. S289-S318
    • Freeman, R.B.1    Huang, W.2
  • 17
    • 84856521457 scopus 로고    scopus 로고
    • Statistical physics approach to dendritic computation: the excitable-wave mean-field approximation
    • Gollo LL, Kinouchi O, Copelli M. 2012. Statistical physics approach to dendritic computation: the excitable-wave mean-field approximation. Physical Review E 85:011911 DOI 10.1103/PhysRevE.85.011911.
    • (2012) Physical Review E , vol.85
    • Gollo, L.L.1    Kinouchi, O.2    Copelli, M.3
  • 18
    • 84889573074 scopus 로고    scopus 로고
    • Single-neuron criticality optimizes analog dendritic computation
    • Gollo LL, Kinouchi O, Copelli M. 2013. Single-neuron criticality optimizes analog dendritic computation. Scientific Reports 3:3222 DOI 10.1038/srep03222.
    • (2013) Scientific Reports , vol.3 , pp. 3222
    • Gollo, L.L.1    Kinouchi, O.2    Copelli, M.3
  • 19
    • 84860455282 scopus 로고    scopus 로고
    • Signal integration enhances the dynamic range in neuronal systems
    • Gollo LL, Mirasso C, Eguíluz VM. 2012. Signal integration enhances the dynamic range in neuronal systems. Physical Review E 85:040902 DOI 10.1103/PhysRevE.85.040902.
    • (2012) Physical Review E , vol.85
    • Gollo, L.L.1    Mirasso, C.2    Eguíluz, V.M.3
  • 22
    • 84876744243 scopus 로고    scopus 로고
    • Brain organization into resting state networks emerges at criticality on a model of the human connectome
    • Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR. 2013. Brain organization into resting state networks emerges at criticality on a model of the human connectome. Physical Review Letters 110:178101 DOI 10.1103/PhysRevLett.110.178101.
    • (2013) Physical Review Letters , vol.110
    • Haimovici, A.1    Tagliazucchi, E.2    Balenzuela, P.3    Chialvo, D.R.4
  • 23
    • 18144382578 scopus 로고    scopus 로고
    • Critical branching captures activity in living neural networks and maximizes the number of metastable states
    • Haldeman C, Beggs JM. 2005. Critical branching captures activity in living neural networks and maximizes the number of metastable states. Physical Review Letters 94:058101 DOI 10.1103/PhysRevLett.94.058101.
    • (2005) Physical Review Letters , vol.94
    • Haldeman, C.1    Beggs, J.M.2
  • 24
    • 84940762591 scopus 로고    scopus 로고
    • Experimentally verified parameter sets for modelling heterogeneous neocortical pyramidal-cell populations
    • Harrison PM, Badel L, Wall MJ, Richardson MJE. 2015. Experimentally verified parameter sets for modelling heterogeneous neocortical pyramidal-cell populations. PLoS Computational Biology 11:e1004165 DOI 10.1371/journal.pcbi.1004165.
    • (2015) PLoS Computational Biology , vol.11
    • Harrison, P.M.1    Badel, L.2    Wall, M.J.3    Richardson, M.J.E.4
  • 27
    • 77954386968 scopus 로고    scopus 로고
    • Can structure predict function in the human brain?
    • Honey CJ, Thivierge J-P, Sporns O. 2010. Can structure predict function in the human brain? NeuroImage 52:766-776 DOI 10.1016/j.neuroimage.2010.01.071.
    • (2010) NeuroImage , vol.52 , pp. 766-776
    • Honey, C.J.1    Thivierge, J.-P.2    Sporns, O.3
  • 28
    • 84907152571 scopus 로고    scopus 로고
    • The competing benefits of noise and heterogeneity in neural coding
    • Hunsberger E, Scott M, Eliasmith C. 2014. The competing benefits of noise and heterogeneity in neural coding. Neural Computation 26:1600-1623 DOI 10.1162/NECO_a_00621.
    • (2014) Neural Computation , vol.26 , pp. 1600-1623
    • Hunsberger, E.1    Scott, M.2    Eliasmith, C.3
  • 30
    • 67650403828 scopus 로고    scopus 로고
    • The role of context in work team diversity research: a meta-analytic review
    • Joshi A, Roh H. 2009. The role of context in work team diversity research: a meta-analytic review. Academy of Management Journal 52:599-627 DOI 10.5465/AMJ.2009.41331491.
    • (2009) Academy of Management Journal , vol.52 , pp. 599-627
    • Joshi, A.1    Roh, H.2
  • 32
    • 33646856921 scopus 로고    scopus 로고
    • Optimal dynamical range of excitable networks at criticality
    • Kinouchi O, Copelli M. 2006. Optimal dynamical range of excitable networks at criticality. Nature Physics 2:348-351 DOI 10.1038/nphys289.
    • (2006) Nature Physics , vol.2 , pp. 348-351
    • Kinouchi, O.1    Copelli, M.2
  • 34
    • 79551609375 scopus 로고    scopus 로고
    • Predicting criticality and dynamic range in complex networks: effects of topology
    • Larremore DB, Shew WL, Restrepo JG. 2011. Predicting criticality and dynamic range in complex networks: effects of topology. Physical Review Letters 106:058101 DOI 10.1103/PhysRevLett.106.058101.
    • (2011) Physical Review Letters , vol.106
    • Larremore, D.B.1    Shew, W.L.2    Restrepo, J.G.3
  • 35
    • 84903647613 scopus 로고    scopus 로고
    • Modeling positive granger causality and negative phase lag between cortical areas
    • Matias FS, Gollo LL, Carelli PV, Bressler SL, Copelli M, Mirasso CR. 2014. Modeling positive granger causality and negative phase lag between cortical areas. NeuroImage 99:411-418 DOI 10.1016/j.neuroimage.2014.05.063.
    • (2014) NeuroImage , vol.99 , pp. 411-418
    • Matias, F.S.1    Gollo, L.L.2    Carelli, P.V.3    Bressler, S.L.4    Copelli, M.5    Mirasso, C.R.6
  • 36
    • 84861834038 scopus 로고    scopus 로고
    • Optimal heterogeneity for coding in spiking neural networks
    • Mejias JF, Longtin A. 2012. Optimal heterogeneity for coding in spiking neural networks. Physical Review Letters 108:228102 DOI 10.1103/PhysRevLett.108.228102.
    • (2012) Physical Review Letters , vol.108
    • Mejias, J.F.1    Longtin, A.2
  • 37
    • 84907154030 scopus 로고    scopus 로고
    • Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks
    • Mejias JF, Longtin A. 2014. Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks. Frontiers in Compu-tational Neuroscience 8:107.
    • (2014) Frontiers in Compu-tational Neuroscience , vol.8 , pp. 107
    • Mejias, J.F.1    Longtin, A.2
  • 38
    • 84923067274 scopus 로고    scopus 로고
    • Neural heterogeneities determine response characteristics to second-, but not first-order stimulus features
    • Metzen MG, Chacron MJ. 2015. Neural heterogeneities determine response characteristics to second-, but not first-order stimulus features. The Journal of Neuroscience 35:3124-3138 DOI 10.1523/JNEUROSCI.3946-14.2015.
    • (2015) The Journal of Neuroscience , vol.35 , pp. 3124-3138
    • Metzen, M.G.1    Chacron, M.J.2
  • 41
    • 84880579074 scopus 로고    scopus 로고
    • Optimal channel efficiency in a sensory network
    • Mosqueiro TS, Maia LP. 2013. Optimal channel efficiency in a sensory network. Physical Review E 88:012712.
    • (2013) Physical Review E , vol.88
    • Mosqueiro, T.S.1    Maia, L.P.2
  • 42
    • 77957267964 scopus 로고    scopus 로고
    • Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content
    • Padmanabhan K, Urban NN. 2010. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nature Neuroscience 13:1276-1282 DOI 10.1038/nn.2630.
    • (2010) Nature Neuroscience , vol.13 , pp. 1276-1282
    • Padmanabhan, K.1    Urban, N.N.2
  • 43
    • 84865208084 scopus 로고    scopus 로고
    • How to enhance the dynamic range of excitatory-inhibitory excitable networks
    • Pei S, Tang S, Yan S, Jiang S, Zhang, Z, Zheng X. 2012. How to enhance the dynamic range of excitatory-inhibitory excitable networks. Physical Review E 86:021909 DOI 10.1103/PhysRevE.86.021909.
    • (2012) Physical Review E , vol.86
    • Pei, S.1    Tang, S.2    Yan, S.3    Jiang, S.4    Zhang, Z.5    Zheng, X.6
  • 45
    • 84907286223 scopus 로고    scopus 로고
    • Mean-field theory of assortative networks of phase oscillators
    • Restrepo JG, Ott E. 2014. Mean-field theory of assortative networks of phase oscillators. EPL 107:60006 DOI 10.1209/0295-5075/107/60006.
    • (2014) EPL , vol.107 , pp. 60006
    • Restrepo, J.G.1    Ott, E.2
  • 47
    • 79959856130 scopus 로고    scopus 로고
    • Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons
    • Rubinov M, Sporns O, Thivierge J-P, Breakspear M. 2011. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Computational Biology 7:e1002038 DOI 10.1371/journal.pcbi.1002038.
    • (2011) PLoS Computational Biology , vol.7
    • Rubinov, M.1    Sporns, O.2    Thivierge, J.-P.3    Breakspear, M.4
  • 48
    • 67649503007 scopus 로고    scopus 로고
    • Symbiotic relationship between brain structure and dynamics
    • Rubinov M, Sporns O, Van Leeuwen C, Breakspear M. 2009. Symbiotic relationship between brain structure and dynamics. BMC Neuroscience 10:55 DOI 10.1186/1471-2202-10-55.
    • (2009) BMC Neuroscience , vol.10 , pp. 55
    • Rubinov, M.1    Sporns, O.2    Van Leeuwen, C.3    Breakspear, M.4
  • 49
    • 84928823701 scopus 로고    scopus 로고
    • Recent advances in percolation theory and its applications
    • Saberi AA. 2015. Recent advances in percolation theory and its applications. Physics Reports 578:1-32 DOI 10.1016/j.physrep.2015.03.003.
    • (2015) Physics Reports , vol.578 , pp. 1-32
    • Saberi, A.A.1
  • 50
    • 78650750566 scopus 로고    scopus 로고
    • Neural heterogeneities influence envelope and temporal coding at the sensory periphery
    • Savard M, Krahe R, Chacron MJ. 2011. Neural heterogeneities influence envelope and temporal coding at the sensory periphery. Neuroscience 172:270-284 DOI 10.1016/j.neuroscience.2010.10.061.
    • (2011) Neuroscience , vol.172 , pp. 270-284
    • Savard, M.1    Krahe, R.2    Chacron, M.J.3
  • 51
    • 84938635857 scopus 로고    scopus 로고
    • Degree correlations optimize neuronal network sensitivity to sub-threshold stimuli
    • Schmeltzer C, Kihara AH, Sokolov IM, Rüdiger S. 2015. Degree correlations optimize neuronal network sensitivity to sub-threshold stimuli. PloS ONE 10:e0121794 DOI 10.1371/journal.pone.0121794.
    • (2015) PloS ONE , vol.10
    • Schmeltzer, C.1    Kihara, A.H.2    Sokolov, I.M.3    Rüdiger, S.4
  • 52
    • 84920129218 scopus 로고    scopus 로고
    • Toward functional classification of neuronal types
    • Sharpee TO. 2014. Toward functional classification of neuronal types. Neuron 83:1329-1334 DOI 10.1016/j.neuron.2014.08.040.
    • (2014) Neuron , vol.83 , pp. 1329-1334
    • Sharpee, T.O.1
  • 53
    • 71849090030 scopus 로고    scopus 로고
    • Neuronal avalanches imply maximum dynamic range in cortical networks at criticality
    • Shew WL, Yang H, Petermann T, Roy R, Plenz D. 2009. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. The Journal of Neuro-science 29:15595-15600 DOI 10.1523/JNEUROSCI.3864-09.2009.
    • (2009) The Journal of Neuro-science , vol.29 , pp. 15595-15600
    • Shew, W.L.1    Yang, H.2    Petermann, T.3    Roy, R.4    Plenz, D.5
  • 54
    • 78650868298 scopus 로고    scopus 로고
    • Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches
    • Shew WL, Yang H, Yu S, Roy R, Plenz D. 2011. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. The Journal of Neuroscience 31:55-63 DOI 10.1523/JNEUROSCI.4637-10.2011.
    • (2011) The Journal of Neuroscience , vol.31 , pp. 55-63
    • Shew, W.L.1    Yang, H.2    Yu, S.3    Roy, R.4    Plenz, D.5
  • 55
    • 84878354924 scopus 로고    scopus 로고
    • Collective motion of humans in mosh and circle pits at heavy metal concerts
    • Silverberg JL, Bierbaum M, Sethna JP, Cohen I. 2013. Collective motion of humans in mosh and circle pits at heavy metal concerts. Physical Review Letters 110:228701 DOI 10.1103/PhysRevLett.110.228701.
    • (2013) Physical Review Letters , vol.110
    • Silverberg, J.L.1    Bierbaum, M.2    Sethna, J.P.3    Cohen, I.4
  • 60
    • 45549122244 scopus 로고    scopus 로고
    • Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field
    • Vladimirski BB, Tabak J, O'Donovan MJ, Rinzel J. 2008. Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field. Journal of Computational Neuroscience 25:39-63 DOI 10.1007/s10827-007-0064-4.
    • (2008) Journal of Computational Neuroscience , vol.25 , pp. 39-63
    • Vladimirski, B.B.1    Tabak, J.2    O'Donovan, M.J.3    Rinzel, J.4
  • 61
    • 0033515888 scopus 로고    scopus 로고
    • Complexity in biological signaling systems
    • Weng G, Bhalla US, Iyengar R. 1999. Complexity in biological signaling systems. Science 284:92-96 DOI 10.1126/science.284.5411.92.
    • (1999) Science , vol.284 , pp. 92-96
    • Weng, G.1    Bhalla, U.S.2    Iyengar, R.3
  • 62
    • 0242475319 scopus 로고    scopus 로고
    • Interneuron diversity series: inhibitory interneurons and network oscillations in vitro
    • Whittington MA, Traub RD. 2003. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends in Neurosciences 26:676-682 DOI 10.1016/j.tins.2003.09.016.
    • (2003) Trends in Neurosciences , vol.26 , pp. 676-682
    • Whittington, M.A.1    Traub, R.D.2
  • 63
    • 0015260274 scopus 로고
    • Excitatory and inhibitory interactions in localized populations of model neurons
    • Wilson HR, Cowan JD. 1972. Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12:1-24 DOI 10.1016/S0006-3495(72)86068-5.
    • (1972) Biophysical Journal , vol.12 , pp. 1-24
    • Wilson, H.R.1    Cowan, J.D.2
  • 64
    • 33947172584 scopus 로고    scopus 로고
    • Excitable greenberg-hastings cellular automaton model on scale-free networks
    • Wu A-C, Xu X-J, Wang Y-H. 2007. Excitable greenberg-hastings cellular automaton model on scale-free networks. Physical Review E 75:032901 DOI 10.1103/PhysRevE.75.032901.
    • (2007) Physical Review E , vol.75
    • Wu, A.-C.1    Xu, X.-J.2    Wang, Y.-H.3
  • 65
    • 84862908621 scopus 로고    scopus 로고
    • Maximal variability of phase synchrony in cortical networks with neuronal avalanches
    • Yang H, Shew WL, Roy R, Plenz D. 2012. Maximal variability of phase synchrony in cortical networks with neuronal avalanches. The Journal of Neuroscience 32: 1061-1072 DOI 10.1523/JNEUROSCI.2771-11.2012.
    • (2012) The Journal of Neuroscience , vol.32 , pp. 1061-1072
    • Yang, H.1    Shew, W.L.2    Roy, R.3    Plenz, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.