메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Autonomous self-healing structural composites with bio-inspired design

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84966271575     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep25059     Document Type: Article
Times cited : (51)

References (41)
  • 2
    • 84939222493 scopus 로고    scopus 로고
    • The Interplay of Modulus, Strength, and Ductility in Adhesive Design Using Biomimetic Polymer Chemistry
    • Meredith, H. J. & J. J. Wilker. The Interplay of Modulus, Strength, and Ductility in Adhesive Design Using Biomimetic Polymer Chemistry. Advanced Functional Materials 25(31), 5057-5065 (2015).
    • (2015) Advanced Functional Materials , vol.25 , Issue.31 , pp. 5057-5065
    • Meredith, H.J.1    Wilker, J.J.2
  • 3
    • 50049099847 scopus 로고    scopus 로고
    • Materials design principles of ancient fish armour
    • Bruet, B. J. F. et al. Materials design principles of ancient fish armour. Nature Materials 7(9), 748-756 (2008).
    • (2008) Nature Materials , vol.7 , Issue.9 , pp. 748-756
    • Bruet, B.J.F.1
  • 4
    • 77951673396 scopus 로고    scopus 로고
    • A novel biomimetic approach to the design of high-performance ceramic-metal composites
    • Launey, M. E. et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites. Journal of the Royal Society Interface 7(46), 741-753 (2010).
    • (2010) Journal of the Royal Society Interface , vol.7 , Issue.46 , pp. 741-753
    • Launey, M.E.1
  • 5
    • 84884907322 scopus 로고    scopus 로고
    • Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures
    • Studart, A. R. Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures. Advanced Functional Materials 23(36), 4423-4436 (2013).
    • (2013) Advanced Functional Materials , vol.23 , Issue.36 , pp. 4423-4436
    • Studart, A.R.1
  • 6
    • 57349107721 scopus 로고    scopus 로고
    • Tough, Bio-Inspired Hybrid Materials
    • Munch, E. et al. Tough, Bio-Inspired Hybrid Materials. Science 322(5907), 1516-1520 (2008).
    • (2008) Science , vol.322 , Issue.5907 , pp. 1516-1520
    • Munch, E.1
  • 7
    • 84855849460 scopus 로고    scopus 로고
    • Composites Reinforced in Three Dimensions by Using Low Magnetic Fields
    • Erb, R. M. et al. Composites Reinforced in Three Dimensions by Using Low Magnetic Fields. Science 335(6065), 199-204 (2012).
    • (2012) Science , vol.335 , Issue.6065 , pp. 199-204
    • Erb, R.M.1
  • 8
    • 43049178209 scopus 로고    scopus 로고
    • Self-healing polymeric materials: A review of recent developments
    • Wu, D. Y., S. Meure & D. Solomon. Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science 33(5), 479-522 (2008).
    • (2008) Progress in Polymer Science , vol.33 , Issue.5 , pp. 479-522
    • Wu, D.Y.1    Meure, S.2    Solomon, D.3
  • 9
    • 0035865072 scopus 로고    scopus 로고
    • Autonomic healing of polymer composites
    • White, S. R. et al. Autonomic healing of polymer composites. Nature 409(6822), 794-7 (2001).
    • (2001) Nature , vol.409 , Issue.6822 , pp. 794-797
    • White, S.R.1
  • 10
    • 39749132924 scopus 로고    scopus 로고
    • Self-healing and thermoreversible rubber from supramolecular assembly
    • Cordier, P. et al. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977-980 (2008).
    • (2008) Nature , vol.451 , Issue.7181 , pp. 977-980
    • Cordier, P.1
  • 12
    • 34547584817 scopus 로고    scopus 로고
    • Self-healing materials with microvascular networks
    • Toohey, K. S. et al. Self-healing materials with microvascular networks. Nature Materials 6(8), 581-585 (2007).
    • (2007) Nature Materials , vol.6 , Issue.8 , pp. 581-585
    • Toohey, K.S.1
  • 13
    • 79960116333 scopus 로고    scopus 로고
    • Deformation and Fracture Mechanisms of Bone and Nacre
    • Wang, R. Z. & H. S. Gupta. Deformation and Fracture Mechanisms of Bone and Nacre. Annual Review of Materials Research, 41(41), 41-73 (2011).
    • (2011) Annual Review of Materials Research , vol.41 , Issue.41 , pp. 41-73
    • Wang, R.Z.1    Gupta, H.S.2
  • 14
    • 23244461731 scopus 로고    scopus 로고
    • Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture
    • Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials 4(8), 612-616 (2005).
    • (2005) Nature Materials , vol.4 , Issue.8 , pp. 612-616
    • Fantner, G.E.1
  • 15
    • 34447517407 scopus 로고    scopus 로고
    • A reversible wet/dry adhesive inspired by mussels and geckos
    • Lee, H., B. P. Lee & P. B. Messersmith. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151), 338-U4 (2007).
    • (2007) Nature , vol.448 , Issue.7151 , pp. 338-U4
    • Lee, H.1    Lee, B.P.2    Messersmith, P.B.3
  • 17
    • 78249265051 scopus 로고    scopus 로고
    • Scaling of strength and ductility in bioinspired brick and mortar composites
    • Wilbrink, D. V. et al. Scaling of strength and ductility in bioinspired brick and mortar composites. Applied Physics Letters 97(19) (2010).
    • (2010) Applied Physics Letters , vol.97 , Issue.19
    • Wilbrink, D.V.1
  • 18
    • 84907663137 scopus 로고    scopus 로고
    • Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size
    • Barthelat, F. Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size. Journal of the Mechanics and Physics of Solids 73, 22-37 (2014).
    • (2014) Journal of the Mechanics and Physics of Solids , vol.73 , pp. 22-37
    • Barthelat, F.1
  • 19
    • 35048847114 scopus 로고    scopus 로고
    • Mechanical strength of abalone nacre: Role of the soft organic layer
    • Meyers, M. A. et al. Mechanical strength of abalone nacre: Role of the soft organic layer. Journal of the mechanical behavior of biomedical materials 1(1), 76-85 (2008).
    • (2008) Journal of the Mechanical Behavior of Biomedical Materials , vol.1 , Issue.1 , pp. 76-85
    • Meyers, M.A.1
  • 20
    • 0003420406 scopus 로고    scopus 로고
    • Fracture mechanics testing methods for polymers, adhesives, and composites
    • Amsterdam; Oxford: Elsevier
    • Moore, D., A. Pavan & J. G. Williams. Fracture mechanics testing methods for polymers, adhesives, and composites. ESIS publication, Amsterdam; Oxford: Elsevier. xi, 375 p (2001).
    • (2001) ESIS Publication
    • Moore, D.1    Pavan, A.2    Williams, J.G.3
  • 22
    • 84905748483 scopus 로고    scopus 로고
    • Synthesis of polyborosiloxane and its reversible physical crosslinks
    • Li, X. F. et al. Synthesis of polyborosiloxane and its reversible physical crosslinks. Rsc Advances 4(62), 32894-32901 (2014).
    • (2014) Rsc Advances , vol.4 , Issue.62 , pp. 32894-32901
    • Li, X.F.1
  • 23
    • 60449087889 scopus 로고    scopus 로고
    • Fabrication and processing of polymer solar cells: A review of printing and coating techniques
    • Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells 93(4), 394-412 (2009).
    • (2009) Solar Energy Materials and Solar Cells , vol.93 , Issue.4 , pp. 394-412
    • Krebs, F.C.1
  • 25
    • 0000838507 scopus 로고    scopus 로고
    • Model for the robust mechanical behavior of nacre
    • Evans, A. G. et al. Model for the robust mechanical behavior of nacre. Journal of Materials Research 16(9), 2475-2484 (2001).
    • (2001) Journal of Materials Research , vol.16 , Issue.9 , pp. 2475-2484
    • Evans, A.G.1
  • 26
  • 27
    • 0036958797 scopus 로고    scopus 로고
    • Fracture testing of a self-healing polymer composite
    • Brown, E. N., N. R. Sottos & S. R. White. Fracture testing of a self-healing polymer composite. Experimental Mechanics 42(4), 372-379 (2002).
    • (2002) Experimental Mechanics , vol.42 , Issue.4 , pp. 372-379
    • Brown, E.N.1    Sottos, N.R.2    White, S.R.3
  • 29
    • 0025699940 scopus 로고
    • A Simple Way to Make Tough Ceramics
    • Clegg, W. J. et al. A Simple Way to Make Tough Ceramics. Nature 347(6292), 455-457 (1990).
    • (1990) Nature , vol.347 , Issue.6292 , pp. 455-457
    • Clegg, W.J.1
  • 30
    • 21644475174 scopus 로고    scopus 로고
    • A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility
    • Pang, J. W. C. & I. P. Bond. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Composites Science and Technology 65(11-12), 1791-1799 (2005).
    • (2005) Composites Science and Technology , vol.65 , Issue.11-12 , pp. 1791-1799
    • Pang, J.W.C.1    Bond, I.P.2
  • 32
    • 0036500524 scopus 로고    scopus 로고
    • A thermally re-mendable cross-linked polymeric material
    • Chen, X. X. et al. A thermally re-mendable cross-linked polymeric material. Science 295(5560), 1698-1702 (2002).
    • (2002) Science , vol.295 , Issue.5560 , pp. 1698-1702
    • Chen, X.X.1
  • 33
    • 34548678402 scopus 로고    scopus 로고
    • Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer
    • Plaisted, T. A. & S. Nemat-Nasser. Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer. Acta Materialia 55(17), 5684-5696 (2007).
    • (2007) Acta Materialia , vol.55 , Issue.17 , pp. 5684-5696
    • Plaisted, T.A.1    Nemat-Nasser, S.2
  • 35
    • 79955453665 scopus 로고    scopus 로고
    • Optically healable supramolecular polymers
    • Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472(7343), 334-U230 (2011).
    • (2011) Nature , vol.472 , Issue.7343 , pp. 334-U230
    • Burnworth, M.1
  • 36
    • 6044223548 scopus 로고    scopus 로고
    • Crack healing in polymeric materials via photochemical [2 + 2] cycloaddition
    • Chung, C. M. et al. Crack healing in polymeric materials via photochemical [2 + 2] cycloaddition. Chemistry of Materials 16(21), 3982-3984 (2004).
    • (2004) Chemistry of Materials , vol.16 , Issue.21 , pp. 3982-3984
    • Chung, C.M.1
  • 37
    • 62449245466 scopus 로고    scopus 로고
    • Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks
    • Ghosh, B. & M. W. Urban. Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks. Science 323(5920), 1458-1460 (2009).
    • (2009) Science , vol.323 , Issue.5920 , pp. 1458-1460
    • Ghosh, B.1    Urban, M.W.2
  • 38
    • 84874659562 scopus 로고    scopus 로고
    • An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications
    • Tee, B. C. K. et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology 7(12), 825-832 (2012).
    • (2012) Nature Nanotechnology , vol.7 , Issue.12 , pp. 825-832
    • Tee, B.C.K.1
  • 39
    • 84896995625 scopus 로고    scopus 로고
    • Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis
    • Rekondo, A. et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Materials Horizons 1(2), 237-240 (2014).
    • (2014) Materials Horizons , vol.1 , Issue.2 , pp. 237-240
    • Rekondo, A.1
  • 40
    • 84862845021 scopus 로고    scopus 로고
    • Multiphase design of autonomic self-healing thermoplastic elastomers
    • Chen, Y. L. et al. Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chemistry 4(6), 467-472 (2012).
    • (2012) Nature Chemistry , vol.4 , Issue.6 , pp. 467-472
    • Chen, Y.L.1
  • 41
    • 79959461132 scopus 로고    scopus 로고
    • Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions
    • Tuncaboylu, D. C. et al. Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions. Macromolecules 44(12), 4997-5005 (2011).
    • (2011) Macromolecules , vol.44 , Issue.12 , pp. 4997-5005
    • Tuncaboylu, D.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.