메뉴 건너뛰기




Volumn , Issue , 2014, Pages 643-652

Collaborative multi-output gaussian processes

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); OPTIMIZATION;

EID: 84923281507     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (110)

References (18)
  • 1
    • 84858759793 scopus 로고    scopus 로고
    • Sparse convolved Gaussian processes for multi-output regression
    • Alvarez, M. and Lawrence, N. D. (2009). Sparse convolved Gaussian processes for multi-output regression. In NIPS.
    • (2009) NIPS
    • Alvarez, M.1    Lawrence, N.D.2
  • 2
    • 84860634598 scopus 로고    scopus 로고
    • Efficient multioutput Gaussian processes through variational inducing kernels
    • Alvarez, M. A., Luengo, D., Titsias, M. K., and Lawrence, N. D. (2010). Efficient multioutput Gaussian processes through variational inducing kernels. In AISTATS.
    • (2010) AISTATS
    • Álvarez, M.A.1    Luengo, D.2    Titsias, M.K.3    Lawrence, N.D.4
  • 4
    • 84898973907 scopus 로고    scopus 로고
    • Dependent Gaussian processes
    • Boyle, P. and Frean, M. (2005). Dependent Gaussian processes. In NIPS.
    • (2005) NIPS
    • Boyle, P.1    Frean, M.2
  • 5
    • 84871709108 scopus 로고    scopus 로고
    • Multi-task gaussian process learning of robot inverse dynamics
    • Chai, K. M. A., Williams, C. K., Klanke, S., and Vijayakumar, S. (2008). Multi-task gaussian process learning of robot inverse dynamics. In NIPS.
    • (2008) NIPS
    • Chai, K.M.A.1    Williams, C.K.2    Klanke, S.3    Vijayakumar, S.4
  • 8
    • 84877726166 scopus 로고    scopus 로고
    • Fast variational inference in the conjugate exponential family
    • Hensman, J., Rattray, M., and Lawrence, N. D. (2012). Fast variational inference in the conjugate exponential family. In NIPS.
    • (2012) NIPS
    • Hensman, J.1    Rattray, M.2    Lawrence, N.D.3
  • 9
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37:183-233.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 10
    • 84923287556 scopus 로고    scopus 로고
    • Efficient variational inference for gaussian process regression networks
    • Nguyen, T. V. and Bonilla, E. V. (2013). Efficient variational inference for gaussian process regression networks. In AISTATS.
    • (2013) AISTATS
    • Nguyen, T.V.1    Bonilla, E.V.2
  • 14
    • 84862602372 scopus 로고    scopus 로고
    • Semiparametric latent factor models
    • Teh, Y. W., Seeger, M., and Jordan, M. I. (2005). Semiparametric latent factor models. In AISTATS.
    • (2005) AISTATS
    • Teh, Y.W.1    Seeger, M.2    Jordan, M.I.3
  • 15
    • 80053168930 scopus 로고    scopus 로고
    • Variational learning of inducing variables in sparse Gaussian processes
    • Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes. In AISTATS.
    • (2009) AISTATS
    • Titsias, M.1
  • 16
    • 85162414745 scopus 로고    scopus 로고
    • Spike and slab variational inference for multi-task and multiple kernel learning
    • Titsias, M. K. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for multi-task and multiple kernel learning. In NIPS.
    • (2011) NIPS
    • Titsias, M.K.1    Lázaro-Gredilla, M.2
  • 17
    • 0002891388 scopus 로고    scopus 로고
    • Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional space
    • Vijayakumar, S. and Schaal, S. (2000). Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional space. In ICML.
    • (2000) ICML
    • Vijayakumar, S.1    Schaal, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.