-
1
-
-
84858759793
-
Sparse convolved Gaussian processes for multi-output regression
-
Alvarez, M. and Lawrence, N. D. (2009). Sparse convolved Gaussian processes for multi-output regression. In NIPS.
-
(2009)
NIPS
-
-
Alvarez, M.1
Lawrence, N.D.2
-
2
-
-
84860634598
-
Efficient multioutput Gaussian processes through variational inducing kernels
-
Alvarez, M. A., Luengo, D., Titsias, M. K., and Lawrence, N. D. (2010). Efficient multioutput Gaussian processes through variational inducing kernels. In AISTATS.
-
(2010)
AISTATS
-
-
Álvarez, M.A.1
Luengo, D.2
Titsias, M.K.3
Lawrence, N.D.4
-
4
-
-
84898973907
-
Dependent Gaussian processes
-
Boyle, P. and Frean, M. (2005). Dependent Gaussian processes. In NIPS.
-
(2005)
NIPS
-
-
Boyle, P.1
Frean, M.2
-
5
-
-
84871709108
-
Multi-task gaussian process learning of robot inverse dynamics
-
Chai, K. M. A., Williams, C. K., Klanke, S., and Vijayakumar, S. (2008). Multi-task gaussian process learning of robot inverse dynamics. In NIPS.
-
(2008)
NIPS
-
-
Chai, K.M.A.1
Williams, C.K.2
Klanke, S.3
Vijayakumar, S.4
-
8
-
-
84877726166
-
Fast variational inference in the conjugate exponential family
-
Hensman, J., Rattray, M., and Lawrence, N. D. (2012). Fast variational inference in the conjugate exponential family. In NIPS.
-
(2012)
NIPS
-
-
Hensman, J.1
Rattray, M.2
Lawrence, N.D.3
-
9
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37:183-233.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
10
-
-
84923287556
-
Efficient variational inference for gaussian process regression networks
-
Nguyen, T. V. and Bonilla, E. V. (2013). Efficient variational inference for gaussian process regression networks. In AISTATS.
-
(2013)
AISTATS
-
-
Nguyen, T.V.1
Bonilla, E.V.2
-
11
-
-
51249108949
-
Towards real-time information processing of sensor network data using computationally efficient multi-output Gaussian processes
-
Osborne, M. A., Roberts, S. J., Rogers, A., Ramchurn, S. D., and Jennings, N. R. (2008). Towards real-time information processing of sensor network data using computationally efficient multi-output Gaussian processes. In Proceedings of the 7th international conference on Information processing in sensor networks.
-
(2008)
Proceedings of the 7th International Conference on Information Processing in Sensor Networks
-
-
Osborne, M.A.1
Roberts, S.J.2
Rogers, A.3
Ramchurn, S.D.4
Jennings, N.R.5
-
15
-
-
80053168930
-
Variational learning of inducing variables in sparse Gaussian processes
-
Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes. In AISTATS.
-
(2009)
AISTATS
-
-
Titsias, M.1
-
16
-
-
85162414745
-
Spike and slab variational inference for multi-task and multiple kernel learning
-
Titsias, M. K. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for multi-task and multiple kernel learning. In NIPS.
-
(2011)
NIPS
-
-
Titsias, M.K.1
Lázaro-Gredilla, M.2
-
17
-
-
0002891388
-
Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional space
-
Vijayakumar, S. and Schaal, S. (2000). Locally weighted projection regression: An O(n) algorithm for incremental real time learning in high dimensional space. In ICML.
-
(2000)
ICML
-
-
Vijayakumar, S.1
Schaal, S.2
|