메뉴 건너뛰기




Volumn 94, Issue , 2014, Pages 287-302

Fast and accurate modelling of longitudinal and repeated measures neuroimaging data

Author keywords

ADNI; Longitudinal Modelling; Marginal Modelling; Sandwich Estimator

Indexed keywords

ALZHEIMER DISEASE; ANALYTIC METHOD; ARTICLE; COMPUTER MODEL; COMPUTER PROGRAM; DATA ANALYSIS; FUNCTIONAL MAGNETIC RESONANCE IMAGING; INTERMETHOD COMPARISON; MONTE CARLO METHOD; NEUROIMAGING; ORDINARY LEAST SQUARE MODEL; PRIORITY JOURNAL; SANDWICH ESTIMATOR; AGED; ALGORITHM; BRAIN; COMPLICATION; COMPUTER ASSISTED DIAGNOSIS; COMPUTER SIMULATION; FEMALE; HUMAN; IMAGE ENHANCEMENT; LONGITUDINAL STUDY; MALE; MIDDLE AGED; MILD COGNITIVE IMPAIRMENT; PATHOLOGY; PROCEDURES; REPRODUCIBILITY; SCINTISCANNING; SENSITIVITY AND SPECIFICITY; STATISTICAL ANALYSIS; STATISTICAL MODEL; VERY ELDERLY;

EID: 84898664663     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2014.03.029     Document Type: Article
Times cited : (141)

References (55)
  • 2
    • 34248348703 scopus 로고    scopus 로고
    • Bias reduction in standard errors for linear regression with multi-stage samples
    • Bell R.M., McCaffrey D.F. Bias reduction in standard errors for linear regression with multi-stage samples. Surv. Methodol. 2002, 28(2):169-182.
    • (2002) Surv. Methodol. , vol.28 , Issue.2 , pp. 169-182
    • Bell, R.M.1    McCaffrey, D.F.2
  • 3
    • 84870014716 scopus 로고    scopus 로고
    • Statistical analysis of longitudinal neuroimage data with linear mixed effects models
    • Bernal-Rusiel J.L., Greve D.N., Reuter M., Fischl B., Sabuncu M.R. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage 2013, 66:249-260.
    • (2013) NeuroImage , vol.66 , pp. 249-260
    • Bernal-Rusiel, J.L.1    Greve, D.N.2    Reuter, M.3    Fischl, B.4    Sabuncu, M.R.5
  • 4
    • 84879346787 scopus 로고    scopus 로고
    • Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data
    • Bernal-Rusiel J.L., Reuter M., Greve D.N., Fischl B., Sabuncu M.R. Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data. NeuroImage 2013, 81:358-370.
    • (2013) NeuroImage , vol.81 , pp. 358-370
    • Bernal-Rusiel, J.L.1    Reuter, M.2    Greve, D.N.3    Fischl, B.4    Sabuncu, M.R.5
  • 5
    • 0000374566 scopus 로고
    • Problems in the analysis of growth and wear curves
    • Box G.E. Problems in the analysis of growth and wear curves. Biometrics 1950, 6(4):362-389.
    • (1950) Biometrics , vol.6 , Issue.4 , pp. 362-389
    • Box, G.E.1
  • 6
    • 84874769744 scopus 로고    scopus 로고
    • Linear mixed-effects modeling approach to fMRI group analysis
    • Chen G., Saad Z.S., Britton J.C., Pine D.S., Cox R.W. Linear mixed-effects modeling approach to fMRI group analysis. NeuroImage 2013, 73:176-190.
    • (2013) NeuroImage , vol.73 , pp. 176-190
    • Chen, G.1    Saad, Z.S.2    Britton, J.C.3    Pine, D.S.4    Cox, R.W.5
  • 7
    • 0000451048 scopus 로고
    • The bias of a heteroskedasticity consistent covariance matrix estimator
    • Chesher A., Jewitt I. The bias of a heteroskedasticity consistent covariance matrix estimator. Econometrica 1987, 1217-1222.
    • (1987) Econometrica , pp. 1217-1222
    • Chesher, A.1    Jewitt, I.2
  • 10
    • 0000540433 scopus 로고
    • Asymptotic normality and consistency of the least squares estimators for families of linear regressions
    • Eicker F. Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Ann. Math. Stat. 1963, 34(2):447-456.
    • (1963) Ann. Math. Stat. , vol.34 , Issue.2 , pp. 447-456
    • Eicker, F.1
  • 12
    • 0035184396 scopus 로고    scopus 로고
    • Small-sample adjustments for Wald-type tests using sandwich estimators
    • Fay M., Graubard B. Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics 2001, 57(4):1198-1206.
    • (2001) Biometrics , vol.57 , Issue.4 , pp. 1198-1206
    • Fay, M.1    Graubard, B.2
  • 13
    • 0029061272 scopus 로고
    • A caveat concerning independence estimating equations with multivariate binary data
    • Fitzmaurice G.M. A caveat concerning independence estimating equations with multivariate binary data. Biometrics 1995, 309-317.
    • (1995) Biometrics , pp. 309-317
    • Fitzmaurice, G.M.1
  • 15
    • 0000414660 scopus 로고
    • Large sample properties of generalized method of moments estimators
    • Hansen L.P. Large sample properties of generalized method of moments estimators. Econometrica 1982, 1029-1054.
    • (1982) Econometrica , pp. 1029-1054
    • Hansen, L.P.1
  • 18
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville D. Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc. 1977, 320-338.
    • (1977) J. Am. Stat. Assoc. , pp. 320-338
    • Harville, D.1
  • 19
    • 84948493784 scopus 로고
    • Jackknifing in unbalanced situations
    • Hinkley D. Jackknifing in unbalanced situations. Technometrics 1977, 285-292.
    • (1977) Technometrics , pp. 285-292
    • Hinkley, D.1
  • 20
    • 84910570226 scopus 로고
    • Estimating heteroscedastic variances in linear models
    • Horn S., Horn R., Duncan D. Estimating heteroscedastic variances in linear models. J. Am. Stat. Assoc. 1975, 380-385.
    • (1975) J. Am. Stat. Assoc. , pp. 380-385
    • Horn, S.1    Horn, R.2    Duncan, D.3
  • 23
    • 1542784440 scopus 로고    scopus 로고
    • A note on the efficiency of sandwich covariance matrix estimation
    • Kauermann G., Carroll R. A note on the efficiency of sandwich covariance matrix estimation. J. Am. Stat. Assoc. 2001, 96(456):1387-1396.
    • (2001) J. Am. Stat. Assoc. , vol.96 , Issue.456 , pp. 1387-1396
    • Kauermann, G.1    Carroll, R.2
  • 24
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • Kenward M.G., Roger J.H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997, 983-997.
    • (1997) Biometrics , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 25
    • 33846193176 scopus 로고    scopus 로고
    • Marginal regression analysis of longitudinal data with time-dependent covariates: a generalized method-of-moments approach
    • Lai T.L., Small D. Marginal regression analysis of longitudinal data with time-dependent covariates: a generalized method-of-moments approach. J. R. Stat. Soc. Ser. B (Stat Methodol.) 2007, 69(1):79-99.
    • (2007) J. R. Stat. Soc. Ser. B (Stat Methodol.) , vol.69 , Issue.1 , pp. 79-99
    • Lai, T.L.1    Small, D.2
  • 26
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird N., Ware J. Random-effects models for longitudinal data. Biometrics 1982, 963-974.
    • (1982) Biometrics , pp. 963-974
    • Laird, N.1    Ware, J.2
  • 27
    • 84873723896 scopus 로고    scopus 로고
    • Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data
    • Li Y., Gilmore J.H., Shen D., Styner M., Lin W., Zhu H. Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data. NeuroImage 2013, 72:91-105.
    • (2013) NeuroImage , vol.72 , pp. 91-105
    • Li, Y.1    Gilmore, J.H.2    Shen, D.3    Styner, M.4    Lin, W.5    Zhu, H.6
  • 28
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang K., Zeger S. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73(1):13-22.
    • (1986) Biometrika , vol.73 , Issue.1 , pp. 13-22
    • Liang, K.1    Zeger, S.2
  • 29
    • 80054106032 scopus 로고    scopus 로고
    • Estimating and testing variance components in a multi-level glm
    • Lindquist M., Spicer J., Asllani I., Wager T. Estimating and testing variance components in a multi-level glm. NeuroImage 2012, 59(1):490-501.
    • (2012) NeuroImage , vol.59 , Issue.1 , pp. 490-501
    • Lindquist, M.1    Spicer, J.2    Asllani, I.3    Wager, T.4
  • 30
    • 0006739168 scopus 로고    scopus 로고
    • A degrees-of-freedom approximation for a t-statistic with heterogeneous variance
    • Lipsitz S., Ibrahim J., Parzen M. A degrees-of-freedom approximation for a t-statistic with heterogeneous variance. J. R. Stat. Soc. Ser. D Stat. 1999, 48(4):495-506.
    • (1999) J. R. Stat. Soc. Ser. D Stat. , vol.48 , Issue.4 , pp. 495-506
    • Lipsitz, S.1    Ibrahim, J.2    Parzen, M.3
  • 31
    • 0034365095 scopus 로고    scopus 로고
    • Using heteroscedasticity consistent standard errors in the linear regression model
    • Long J., Ervin L. Using heteroscedasticity consistent standard errors in the linear regression model. Am. Stat. 2000, 217-224.
    • (2000) Am. Stat. , pp. 217-224
    • Long, J.1    Ervin, L.2
  • 32
    • 0000921289 scopus 로고
    • Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties
    • MacKinnon J., White H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. J. Econ. 1985, 29(3):305-325.
    • (1985) J. Econ. , vol.29 , Issue.3 , pp. 305-325
    • MacKinnon, J.1    White, H.2
  • 33
    • 0035099161 scopus 로고    scopus 로고
    • A covariance estimator for gee with improved small-sample properties
    • Mancl L., DeRouen T. A covariance estimator for gee with improved small-sample properties. Biometrics 2001, 57(1):126-134.
    • (2001) Biometrics , vol.57 , Issue.1 , pp. 126-134
    • Mancl, L.1    DeRouen, T.2
  • 34
    • 0001589001 scopus 로고
    • Estimating logistic regression parameters for bivariate binary data
    • McDonald B.W. Estimating logistic regression parameters for bivariate binary data. J. R. Stat. Soc. Ser. B Methodol. 1993, 391-397.
    • (1993) J. R. Stat. Soc. Ser. B Methodol. , pp. 391-397
    • McDonald, B.W.1
  • 35
    • 80054006956 scopus 로고    scopus 로고
    • A note on a hierarchical interpretation for negative variance components
    • Molenberghs G., Verbeke G. A note on a hierarchical interpretation for negative variance components. Stat. Model. 2011, 11(5):389-408.
    • (2011) Stat. Model. , vol.11 , Issue.5 , pp. 389-408
    • Molenberghs, G.1    Verbeke, G.2
  • 37
    • 67651023727 scopus 로고    scopus 로고
    • Simple group fMRI modeling and inference
    • Mumford J.A., Nichols T. Simple group fMRI modeling and inference. NeuroImage 2009, 47(4):1469-1475.
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1469-1475
    • Mumford, J.A.1    Nichols, T.2
  • 38
    • 84860662685 scopus 로고
    • A solution to the multivariate Behrens-Fisher problem
    • Nel D., Van der Merwe C. A solution to the multivariate Behrens-Fisher problem. Commun. Stat. Theory Meth. 1986, 15(12):3719-3735.
    • (1986) Commun. Stat. Theory Meth. , vol.15 , Issue.12 , pp. 3719-3735
    • Nel, D.1    Van der Merwe, C.2
  • 39
    • 0031776315 scopus 로고    scopus 로고
    • Between-and within-cluster covariate effects in the analysis of clustered data
    • Neuhaus J., Kalbfleisch J. Between-and within-cluster covariate effects in the analysis of clustered data. Biometrics 1998, 638-645.
    • (1998) Biometrics , pp. 638-645
    • Neuhaus, J.1    Kalbfleisch, J.2
  • 40
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: a primer with examples
    • Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 2002, 15(1):1-25.
    • (2002) Hum. Brain Mapp. , vol.15 , Issue.1 , pp. 1-25
    • Nichols, T.E.1    Holmes, A.P.2
  • 41
    • 0008976515 scopus 로고    scopus 로고
    • On the robust variance estimator in generalised estimating equations
    • Pan W. On the robust variance estimator in generalised estimating equations. Biometrika 2001, 88(3):901-906.
    • (2001) Biometrika , vol.88 , Issue.3 , pp. 901-906
    • Pan, W.1
  • 42
    • 0037198575 scopus 로고    scopus 로고
    • Small-sample adjustments in using the sandwich variance estimator in generalized estimating equations
    • Pan W., Wall M. Small-sample adjustments in using the sandwich variance estimator in generalized estimating equations. Stat. Med. 2002, 21(10):1429-1441.
    • (2002) Stat. Med. , vol.21 , Issue.10 , pp. 1429-1441
    • Pan, W.1    Wall, M.2
  • 43
    • 84963132941 scopus 로고
    • A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data
    • Pepe M.S., Anderson G.L. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Commun. Stat. Simul. Comput. 1994, 23(4):939-951.
    • (1994) Commun. Stat. Simul. Comput. , vol.23 , Issue.4 , pp. 939-951
    • Pepe, M.S.1    Anderson, G.L.2
  • 46
    • 84863304598 scopus 로고    scopus 로고
    • R Core Team, R Foundation for Statistical Computing, Vienna, Austria, (URL)
    • R Core Team R: A Language and Environment for Statistical Computing 2013, R Foundation for Statistical Computing, Vienna, Austria, (URL http://www.R-project.org/).
    • (2013) R: A Language and Environment for Statistical Computing
  • 47
    • 84871663104 scopus 로고    scopus 로고
    • Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying covariates
    • Skup M., Zhu H., Zhang H. Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying covariates. Biometrics 2012, 68(4):1083-1092.
    • (2012) Biometrics , vol.68 , Issue.4 , pp. 1083-1092
    • Skup, M.1    Zhu, H.2    Zhang, H.3
  • 48
    • 80052461390 scopus 로고    scopus 로고
    • Design considerations for characterizing psychiatric trajectories across the lifespan: application to effects of apoe-e4 on cerebral cortical thickness in Alzheimer's disease
    • Thompson W.K., Hallmayer J., O'Hara R. Design considerations for characterizing psychiatric trajectories across the lifespan: application to effects of apoe-e4 on cerebral cortical thickness in Alzheimer's disease. Am. J. Psychiatr. 2011, 168(9):894-903.
    • (2011) Am. J. Psychiatr. , vol.168 , Issue.9 , pp. 894-903
    • Thompson, W.K.1    Hallmayer, J.2    O'Hara, R.3
  • 50
    • 70349226965 scopus 로고    scopus 로고
    • Robust and unbiased variance of glm coefficients for misspecified autocorrelation and hemodynamic response models in fmri
    • Waldorp L. Robust and unbiased variance of glm coefficients for misspecified autocorrelation and hemodynamic response models in fmri. J. Biomed. Imaging 2009, 15.
    • (2009) J. Biomed. Imaging , pp. 15
    • Waldorp, L.1
  • 52
    • 0000095552 scopus 로고
    • A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity
    • White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 817-838.
    • (1980) Econometrica , pp. 817-838
    • White, H.1
  • 53
    • 0029931242 scopus 로고    scopus 로고
    • A unified statistical approach for determining significant signals in images of cerebral activation
    • Worsley K.J., Marrett S., Neelin P., Vandal A.C., Friston K.J., Evans A.C., et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 1996, 4(1):58-73.
    • (1996) Hum. Brain Mapp. , vol.4 , Issue.1 , pp. 58-73
    • Worsley, K.J.1    Marrett, S.2    Neelin, P.3    Vandal, A.C.4    Friston, K.J.5    Evans, A.C.6
  • 55


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.