메뉴 건너뛰기




Volumn 89, Issue , 2014, Pages 70-80

SGPP: Spatial Gaussian predictive process models for neuroimaging data

Author keywords

Cokriging; Functional principal component analysis; Missing data; Prediction; Simultaneous autoregressive model; Spatial Gaussian predictive process

Indexed keywords

ACCURACY; AGE; ARTICLE; CORRELATION ANALYSIS; FEMALE; HUMAN; HUMAN EXPERIMENT; INFANT; LATERAL BRAIN VENTRICLE; MALE; MORPHOMETRICS; NERVE CELL DIFFERENTIATION; NEUROIMAGING; NORMAL HUMAN; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; SIMULATION; SPATIAL GAUSSIAN PREDICTIVE PROCESS; STATISTICAL ANALYSIS; STATISTICAL MODEL; CONTROLLED STUDY; FUNCTIONAL PRINCIPAL COMPONENT MODEL; PROCESS MODEL; SIMULTANEOUS AUTOREGRESSIVE MODEL; VOXEL BASED MORPHOMETRY;

EID: 84892880465     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2013.11.018     Document Type: Article
Times cited : (20)

References (58)
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 289-300.
    • (1995) J. R. Stat. Soc. Ser. B Methodol. , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 34250780421 scopus 로고    scopus 로고
    • Spatio-temporal models for region of interest analyses of functional mappping experiments
    • Bowman F.D. Spatio-temporal models for region of interest analyses of functional mappping experiments. J. Am. Stat. Assoc. 2007, 102:442-453.
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 442-453
    • Bowman, F.D.1
  • 5
    • 36148954681 scopus 로고    scopus 로고
    • Bayesian hierarchical framework for spatial modeling of fmri data
    • Bowman F.D., Caffo B.A., Bassett S., Kilts C. Bayesian hierarchical framework for spatial modeling of fmri data. NeuroImage 2008, 39:146-156.
    • (2008) NeuroImage , vol.39 , pp. 146-156
    • Bowman, F.D.1    Caffo, B.A.2    Bassett, S.3    Kilts, C.4
  • 6
    • 34249054454 scopus 로고    scopus 로고
    • Adaptive Gaussian Markov random fields with applications in human brain mapping
    • Brezger A., Fahrmeir L., Hennerfeind A. Adaptive Gaussian Markov random fields with applications in human brain mapping. J. R. Stat. Soc. Ser. C 2007, 56:327-345.
    • (2007) J. R. Stat. Soc. Ser. C , vol.56 , pp. 327-345
    • Brezger, A.1    Fahrmeir, L.2    Hennerfeind, A.3
  • 7
    • 0043024584 scopus 로고    scopus 로고
    • Hierarchical multivariate car models for spatio-temporally correlated survival data
    • Oxford University Press, Oxford
    • Carlin B.P., Banerjee S. Hierarchical multivariate car models for spatio-temporally correlated survival data. Bayesian Statistics 7 2003, 45-63. Oxford University Press, Oxford.
    • (2003) Bayesian Statistics 7 , pp. 45-63
    • Carlin, B.P.1    Banerjee, S.2
  • 12
    • 77956861781 scopus 로고    scopus 로고
    • Modeling the spatial and temporal dependence in fmri data
    • Derado G., Bowman F.D., Kilts C.D. Modeling the spatial and temporal dependence in fmri data. Biometrics 2010, 66:949-957.
    • (2010) Biometrics , vol.66 , pp. 949-957
    • Derado, G.1    Bowman, F.D.2    Kilts, C.D.3
  • 13
    • 84881422357 scopus 로고    scopus 로고
    • Predicting brain activity using a Bayesian spatial model
    • Derado G., Bowman F., Zhang L. Predicting brain activity using a Bayesian spatial model. Stat. Methods Med. Res. 2013, 22:382-397.
    • (2013) Stat. Methods Med. Res. , vol.22 , pp. 382-397
    • Derado, G.1    Bowman, F.2    Zhang, L.3
  • 15
    • 32644441220 scopus 로고    scopus 로고
    • The NIH MRI study of normal brain development
    • Group, B.D.C.
    • Evans A.C., Group, B.D.C. The NIH MRI study of normal brain development. NeuroImage 2006, 30:184-202.
    • (2006) NeuroImage , vol.30 , pp. 184-202
    • Evans, A.C.1
  • 16
    • 0141767040 scopus 로고    scopus 로고
    • Proper multivariate conditional autoregressive models for spatial data analysis
    • Gelfand A.E., Vounatsou P. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 2003, 4:11-15.
    • (2003) Biostatistics , vol.4 , pp. 11-15
    • Gelfand, A.E.1    Vounatsou, P.2
  • 19
    • 61449261776 scopus 로고    scopus 로고
    • Combined spatial and non-spatial prior for inference on mri time-series
    • Groves A.R., Chappell M.A., Woolrich M.W. Combined spatial and non-spatial prior for inference on mri time-series. NeuroImage 2009, 45:795-809.
    • (2009) NeuroImage , vol.45 , pp. 795-809
    • Groves, A.R.1    Chappell, M.A.2    Woolrich, M.W.3
  • 20
    • 51449118420 scopus 로고    scopus 로고
    • Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia
    • Guo Y., Bowman D.F., Kilts C. Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia. Hum. Brain Mapp. 2008, 29:1092-1109.
    • (2008) Hum. Brain Mapp. , vol.29 , pp. 1092-1109
    • Guo, Y.1    Bowman, D.F.2    Kilts, C.3
  • 21
    • 33747153005 scopus 로고    scopus 로고
    • Properties of principal component methods for functional and longitudinal data analysis
    • Hall P., Müller H.G., Wang J.L. Properties of principal component methods for functional and longitudinal data analysis. Ann. Stat. 2006, 34:1493-1517.
    • (2006) Ann. Stat. , vol.34 , pp. 1493-1517
    • Hall, P.1    Müller, H.G.2    Wang, J.L.3
  • 24
    • 67949103436 scopus 로고    scopus 로고
    • Spatially augmented lpboosting for ad classification with evaluations on the ADNI dataset
    • ADNI
    • Hinrichs C., Singh V., Mukherjee L., Xu G., Chung M.K., Johnson S.C., ADNI Spatially augmented lpboosting for ad classification with evaluations on the ADNI dataset. NeuroImage 2009, 48:138-149.
    • (2009) NeuroImage , vol.48 , pp. 138-149
    • Hinrichs, C.1    Singh, V.2    Mukherjee, L.3    Xu, G.4    Chung, M.K.5    Johnson, S.C.6
  • 25
    • 84859600942 scopus 로고    scopus 로고
    • A regression approach for estimating the parameters of the covariance function of a stationary spatial random process
    • Hyun J.W., Burman P., Paul D. A regression approach for estimating the parameters of the covariance function of a stationary spatial random process. J. Stat. Plan. Infer. 2012, 142:2330-2344.
    • (2012) J. Stat. Plan. Infer. , vol.142 , pp. 2330-2344
    • Hyun, J.W.1    Burman, P.2    Paul, D.3
  • 26
    • 19344366707 scopus 로고    scopus 로고
    • The effect of filter size on VBM analyses of DT-MRI data
    • Jones D.K., Symms M.R., Cercignani M., Howard R.J. The effect of filter size on VBM analyses of DT-MRI data. NeuroImage 2005, 26:546-554.
    • (2005) NeuroImage , vol.26 , pp. 546-554
    • Jones, D.K.1    Symms, M.R.2    Cercignani, M.3    Howard, R.J.4
  • 27
    • 0347354953 scopus 로고    scopus 로고
    • Estimation of simultaneous systems of spatially interrelated cross sectional equations
    • Kelejian H.H., Prucha I.R. Estimation of simultaneous systems of spatially interrelated cross sectional equations. J. Econ. 2004, 118:27-50.
    • (2004) J. Econ. , vol.118 , pp. 27-50
    • Kelejian, H.H.1    Prucha, I.R.2
  • 28
    • 36749077029 scopus 로고    scopus 로고
    • Spatial autocorrelation and the selection of simultaneous autoregressive models
    • Kissling W.D., Carl G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 2008, 17:59-71.
    • (2008) Glob. Ecol. Biogeogr. , vol.17 , pp. 59-71
    • Kissling, W.D.1    Carl, G.2
  • 31
    • 84873723896 scopus 로고    scopus 로고
    • Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data
    • Li Y., Gilmore J.H., Shen D., Styner M., Lin W., Zhu H.T. Multiscale adaptive generalized estimating equations for longitudinal neuroimaging data. NeuroImage 2013, 72:91-105.
    • (2013) NeuroImage , vol.72 , pp. 91-105
    • Li, Y.1    Gilmore, J.H.2    Shen, D.3    Styner, M.4    Lin, W.5    Zhu, H.T.6
  • 32
    • 71849092693 scopus 로고    scopus 로고
    • Quantitative prediction of subjective pain intensity from whole-brain fmri data using gaussian processes
    • Marquand A., Howard M., Brammer M., Chu C., Coen S., Mourão-Miranda J. Quantitative prediction of subjective pain intensity from whole-brain fmri data using gaussian processes. NeuroImage 2010, 49:2178-2189.
    • (2010) NeuroImage , vol.49 , pp. 2178-2189
    • Marquand, A.1    Howard, M.2    Brammer, M.3    Chu, C.4    Coen, S.5    Mourão-Miranda, J.6
  • 33
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
    • Martino F.D., Valente G., Staeren N., Ashburner J., Goebel R., Formisano E. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 2008, 43:44-58.
    • (2008) NeuroImage , vol.43 , pp. 44-58
    • Martino, F.D.1    Valente, G.2    Staeren, N.3    Ashburner, J.4    Goebel, R.5    Formisano, E.6
  • 34
    • 0000928510 scopus 로고
    • Matrix formulation of co-kriging
    • Myers D.E. Matrix formulation of co-kriging. J. Int. Assoc. Math. Geol. 1982, 14:249-257.
    • (1982) J. Int. Assoc. Math. Geol. , vol.14 , pp. 249-257
    • Myers, D.E.1
  • 35
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • Penny W.D., Trujillo-Barreto N.J., Friston K.J. Bayesian fMRI time series analysis with spatial priors. NeuroImage 2005, 24:350-362.
    • (2005) NeuroImage , vol.24 , pp. 350-362
    • Penny, W.D.1    Trujillo-Barreto, N.J.2    Friston, K.J.3
  • 36
    • 21444460810 scopus 로고    scopus 로고
    • Unconstrained parametrizations for variance-covariance matrices
    • Pinheiro J.C., Bates D.M. Unconstrained parametrizations for variance-covariance matrices. Stat. Comput. 1996, 6:289-296.
    • (1996) Stat. Comput. , vol.6 , pp. 289-296
    • Pinheiro, J.C.1    Bates, D.M.2
  • 37
    • 33646008274 scopus 로고    scopus 로고
    • Propagation-separation approach for local likelihood estimation
    • Polzehl J., Spokoiny V.G. Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. Fields 2006, 135:335-362.
    • (2006) Probab. Theory Relat. Fields , vol.135 , pp. 335-362
    • Polzehl, J.1    Spokoiny, V.G.2
  • 38
    • 77953689705 scopus 로고    scopus 로고
    • Structural adaptive segmentation for statistical parametric mapping
    • Polzehl J., Voss H.U., Tabelow K. Structural adaptive segmentation for statistical parametric mapping. NeuroImage 2010, 52:515-523.
    • (2010) NeuroImage , vol.52 , pp. 515-523
    • Polzehl, J.1    Voss, H.U.2    Tabelow, K.3
  • 39
    • 34250703103 scopus 로고    scopus 로고
    • Jump surface estimation, edge detection, and image restoration
    • Qiu P. Jump surface estimation, edge detection, and image restoration. J. Am. Stat. Assoc. 2007, 102.
    • (2007) J. Am. Stat. Assoc. , vol.102
    • Qiu, P.1
  • 40
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for whole-brain classification of fmri data
    • Ryali S., Supekar K., Abrams D.A., Menon V. Sparse logistic regression for whole-brain classification of fmri data. NeuroImage 2010, 51:752-764.
    • (2010) NeuroImage , vol.51 , pp. 752-764
    • Ryali, S.1    Supekar, K.2    Abrams, D.A.3    Menon, V.4
  • 41
    • 84856008847 scopus 로고    scopus 로고
    • A full scale approximation of covariance functions for large spatial data sets
    • Sang H., Huang J.Z. A full scale approximation of covariance functions for large spatial data sets. J. R. Stat. Soc. B 2012, 74:111-132.
    • (2012) J. R. Stat. Soc. B , vol.74 , pp. 111-132
    • Sang, H.1    Huang, J.Z.2
  • 43
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to functional magnetic resonance imaging
    • Smith M.S., Fahrmeir L. Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J. Am. Stat. Assoc. 2007, 102:417-431.
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 417-431
    • Smith, M.S.1    Fahrmeir, L.2
  • 44
    • 37849010186 scopus 로고    scopus 로고
    • A modeling approach for large spatial datasets
    • Stein M.L. A modeling approach for large spatial datasets. J. Korean Stat. Soc. 2008, 37:3-10.
    • (2008) J. Korean Stat. Soc. , vol.37 , pp. 3-10
    • Stein, M.L.1
  • 45
    • 4444354714 scopus 로고    scopus 로고
    • Boundary and medial shape analysis of the hippocampus in schizophrenia
    • Styner M., Lieberman J.A., Pantazis D., Gerig G. Boundary and medial shape analysis of the hippocampus in schizophrenia. Med. Image Anal. 2004, 8:197-203.
    • (2004) Med. Image Anal. , vol.8 , pp. 197-203
    • Styner, M.1    Lieberman, J.A.2    Pantazis, D.3    Gerig, G.4
  • 46
    • 38849163581 scopus 로고    scopus 로고
    • Diffusion tensor imaging: structural adaptive smoothing
    • Tabelow K., Polzehl J., Spokoiny V., Voss H.U. Diffusion tensor imaging: structural adaptive smoothing. NeuroImage 2008, 39:1763-1773.
    • (2008) NeuroImage , vol.39 , pp. 1763-1773
    • Tabelow, K.1    Polzehl, J.2    Spokoiny, V.3    Voss, H.U.4
  • 48
    • 84857718906 scopus 로고    scopus 로고
    • Multiple imputation of missing FMRI data in whole brain analysis original research article
    • Vaden J.K., Gebregziabher M., Kuchinsky S.E., Eckert M.A. Multiple imputation of missing FMRI data in whole brain analysis original research article. NeuroImage 2012, 60:1843-1855.
    • (2012) NeuroImage , vol.60 , pp. 1843-1855
    • Vaden, J.K.1    Gebregziabher, M.2    Kuchinsky, S.E.3    Eckert, M.A.4
  • 49
    • 0742271656 scopus 로고    scopus 로고
    • A close look at the spatial structure implied by the car and sar models
    • Wall M.M. A close look at the spatial structure implied by the car and sar models. J. Stat. Plan. Infer. 2004, 121:311-324.
    • (2004) J. Stat. Plan. Infer. , vol.121 , pp. 311-324
    • Wall, M.M.1
  • 51
    • 7044237460 scopus 로고    scopus 로고
    • Unified univariate and multivariate random field theory
    • Worsley K.J., Taylor J.E., Tomaiuolo F., Lerch J. Unified univariate and multivariate random field theory. NeuroImage 2004, 23:189-195.
    • (2004) NeuroImage , vol.23 , pp. 189-195
    • Worsley, K.J.1    Taylor, J.E.2    Tomaiuolo, F.3    Lerch, J.4
  • 52
    • 33645031408 scopus 로고    scopus 로고
    • Penalized spline models for functional principal component analysis
    • Yao F., Lee T. Penalized spline models for functional principal component analysis. J. R. Stat. Soc. Ser. B Stat Methodol. 2006, 68:3-25.
    • (2006) J. R. Stat. Soc. Ser. B Stat Methodol. , vol.68 , pp. 3-25
    • Yao, F.1    Lee, T.2
  • 53
    • 84901247723 scopus 로고    scopus 로고
    • A longitudinal functional analysis framework for analysis of white matter tract statistics
    • Springer, Berlin/Heidelberg, W.M. Wells, S. Joshi, K.M. Pohl (Eds.)
    • Yuan Y., Gilmore J.H., Geng X., Styner M., Chen K., Wang J.L., Zhu H. A longitudinal functional analysis framework for analysis of white matter tract statistics. LNCS7917, Information Processing in Medical Imaging 2013, 220-231. Springer, Berlin/Heidelberg. W.M. Wells, S. Joshi, K.M. Pohl (Eds.).
    • (2013) LNCS7917, Information Processing in Medical Imaging , pp. 220-231
    • Yuan, Y.1    Gilmore, J.H.2    Geng, X.3    Styner, M.4    Chen, K.5    Wang, J.L.6    Zhu, H.7
  • 54
    • 84946357749 scopus 로고
    • An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias
    • Zellner A. An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. J. Am. Stat. Assoc. 1962, 57:348-368.
    • (1962) J. Am. Stat. Assoc. , vol.57 , pp. 348-368
    • Zellner, A.1
  • 55
    • 84882610999 scopus 로고    scopus 로고
    • Impact of scale space search on age- and gender-related changes in mri-based cortical morphometry
    • Zhao L., Boucher M., Rosa-Neto P., Evans A. Impact of scale space search on age- and gender-related changes in mri-based cortical morphometry. Hum. Brain Mapp. 2013, 34:2113-2128.
    • (2013) Hum. Brain Mapp. , vol.34 , pp. 2113-2128
    • Zhao, L.1    Boucher, M.2    Rosa-Neto, P.3    Evans, A.4
  • 56
    • 34249667588 scopus 로고    scopus 로고
    • Maximum likelihood from spatial random effects models via the stochastic approximation expectation maximization algorithm
    • Zhu H.T., Gu M., Peterson B.S. Maximum likelihood from spatial random effects models via the stochastic approximation expectation maximization algorithm. Stat. Comput. 2007, 15:163-177.
    • (2007) Stat. Comput. , vol.15 , pp. 163-177
    • Zhu, H.T.1    Gu, M.2    Peterson, B.S.3
  • 57


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.