-
1
-
-
0033513358
-
The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons
-
Asada, K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639
-
(1999)
Annu. Rev. Plant Physiol. Plant Mol. Biol.
, vol.50
, pp. 601-639
-
-
Asada, K.1
-
2
-
-
0035886704
-
Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery
-
Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., and Murata, N. (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J. 20, 5587-5594
-
(2001)
EMBO J.
, vol.20
, pp. 5587-5594
-
-
Nishiyama, Y.1
Yamamoto, H.2
Allakhverdiev, S.I.3
Inaba, M.4
Yokota, A.5
Murata, N.6
-
3
-
-
4444313478
-
Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803
-
Nishiyama, Y., Allakhverdiev, S. I., Yamamoto, H., Hayashi, H., and Murata, N. (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43, 11321-11330
-
(2004)
Biochemistry
, vol.43
, pp. 11321-11330
-
-
Nishiyama, Y.1
Allakhverdiev, S.I.2
Yamamoto, H.3
Hayashi, H.4
Murata, N.5
-
4
-
-
79954467937
-
Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II
-
Nishiyama, Y., Allakhverdiev, S. I., and Murata, N. (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol. Plant 142, 35-46
-
(2011)
Physiol. Plant
, vol.142
, pp. 35-46
-
-
Nishiyama, Y.1
Allakhverdiev, S.I.2
Murata, N.3
-
5
-
-
84920250085
-
Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery
-
Nishiyama, Y., and Murata, N. (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 98, 8777-8796
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 8777-8796
-
-
Nishiyama, Y.1
Murata, N.2
-
6
-
-
34250667413
-
Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis
-
Takahashi, S., Bauwe, H., and Badger, M. (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol. 144, 487-494
-
(2007)
Plant Physiol.
, vol.144
, pp. 487-494
-
-
Takahashi, S.1
Bauwe, H.2
Badger, M.3
-
7
-
-
63549118717
-
How does cyclic electron flow alleviate photoinhibition in Arabidopsis?
-
Takahashi, S., Milward, S. E., Fan, D. Y., Chow, W. S., and Badger, M. R. (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol. 149, 1560-1567
-
(2009)
Plant Physiol.
, vol.149
, pp. 1560-1567
-
-
Takahashi, S.1
Milward, S.E.2
Fan, D.Y.3
Chow, W.S.4
Badger, M.R.5
-
8
-
-
34547669234
-
Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II
-
Kojima, K., Oshita, M., Nanjo, Y., Kasai, K., Tozawa, Y., Hayashi, H., and Nishiyama, Y. (2007) Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Mol. Microbiol. 65, 936-947
-
(2007)
Mol. Microbiol.
, vol.65
, pp. 936-947
-
-
Kojima, K.1
Oshita, M.2
Nanjo, Y.3
Kasai, K.4
Tozawa, Y.5
Hayashi, H.6
Nishiyama, Y.7
-
9
-
-
67650541841
-
Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803
-
Kojima, K., Motohashi, K., Morota, T., Oshita, M., Hisabori, T., Hayashi, H., and Nishiyama, Y. (2009) Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 284, 18685-18691
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18685-18691
-
-
Kojima, K.1
Motohashi, K.2
Morota, T.3
Oshita, M.4
Hisabori, T.5
Hayashi, H.6
Nishiyama, Y.7
-
10
-
-
84858706742
-
A change in the sensitivity of elongation factor G to oxidation protects photosystem II from photoinhibition in Synechocystis sp. PCC 6803
-
Ejima, K., Kawaharada, T., Inoue, S., Kojima, K., and Nishiyama, Y. (2012) A change in the sensitivity of elongation factor G to oxidation protects photosystem II from photoinhibition in Synechocystis sp. PCC 6803. FEBS Lett. 586, 778-783
-
(2012)
FEBS Lett.
, vol.586
, pp. 778-783
-
-
Ejima, K.1
Kawaharada, T.2
Inoue, S.3
Kojima, K.4
Nishiyama, Y.5
-
11
-
-
84878924244
-
Structural basis of the translational elongation cycle
-
Voorhees, R. M., and Ramakrishnan, V. (2013) Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 82, 203-236
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 203-236
-
-
Voorhees, R.M.1
Ramakrishnan, V.2
-
12
-
-
0041328668
-
Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells
-
Mostertz, J., and Hecker, M. (2003) Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells. Mol. Genet. Genomics 269, 640-648
-
(2003)
Mol. Genet. Genomics
, vol.269
, pp. 640-648
-
-
Mostertz, J.1
Hecker, M.2
-
13
-
-
35748969097
-
Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins
-
Brandes, N., Rinck, A., Leichert, L. I., and Jakob, U. (2007) Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. Mol. Microbiol. 66, 901-914
-
(2007)
Mol. Microbiol.
, vol.66
, pp. 901-914
-
-
Brandes, N.1
Rinck, A.2
Leichert, L.I.3
Jakob, U.4
-
14
-
-
12244293660
-
S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense
-
Rhee, K. Y., Erdjument-Bromage, H., Tempst, P., and Nathan, C. F. (2005) S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc. Natl. Acad. Sci. U.S.A. 102, 467-472
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 467-472
-
-
Rhee, K.Y.1
Erdjument-Bromage, H.2
Tempst, P.3
Nathan, C.F.4
-
15
-
-
0033081413
-
Cys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA
-
Cys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7, 143-156
-
(1999)
Structure
, vol.7
, pp. 143-156
-
-
Nissen, P.1
Thirup, S.2
Kjeldgaard, M.3
Nyborg, J.4
-
16
-
-
79955590745
-
Construction of a fully active Cys-less elongation factor Tu: Functional role of conserved cysteine 81
-
De Laurentiis, E. I., Mo, F., and Wieden, H. J. (2011) Construction of a fully active Cys-less elongation factor Tu: functional role of conserved cysteine 81. Biochim. Biophys. Acta 1814, 684-692
-
(2011)
Biochim. Biophys. Acta
, vol.1814
, pp. 684-692
-
-
De Laurentiis, E.I.1
Mo, F.2
Wieden, H.J.3
-
17
-
-
84865260282
-
Elongation factor G is a critical target during oxidative damage to the translation system of Escherichia coli
-
Nagano, T., Kojima, K., Hisabori, T., Hayashi, H., Morita, E. H., Kanamori, T., Miyagi, T., Ueda, T., and Nishiyama, Y. (2012) Elongation factor G is a critical target during oxidative damage to the translation system of Escherichia coli. J. Biol. Chem. 287, 28697-28704
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 28697-28704
-
-
Nagano, T.1
Kojima, K.2
Hisabori, T.3
Hayashi, H.4
Morita, E.H.5
Kanamori, T.6
Miyagi, T.7
Ueda, T.8
Nishiyama, Y.9
-
18
-
-
84939602522
-
Oxidation of translation factor EF-G transiently retards the translational elongation cycle in Escherichia coli
-
Nagano, T., Yutthanasirikul, R., Hihara, Y., Hisabori, T., Kanamori, T., Takeuchi, N., Ueda, T., and Nishiyama, Y. (2015) Oxidation of translation factor EF-G transiently retards the translational elongation cycle in Escherichia coli. J. Biochem. 158, 165-172
-
(2015)
J. Biochem.
, vol.158
, pp. 165-172
-
-
Nagano, T.1
Yutthanasirikul, R.2
Hihara, Y.3
Hisabori, T.4
Kanamori, T.5
Takeuchi, N.6
Ueda, T.7
Nishiyama, Y.8
-
19
-
-
0034904102
-
Cell-free translation reconstituted with purified components
-
Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., and Ueda, T. (2001) Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751-755
-
(2001)
Nat. Biotechnol.
, vol.19
, pp. 751-755
-
-
Shimizu, Y.1
Inoue, A.2
Tomari, Y.3
Suzuki, T.4
Yokogawa, T.5
Nishikawa, K.6
Ueda, T.7
-
20
-
-
84864824413
-
Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain
-
Cheng, Z., Wu, J., Setterdahl, A., Reddie, K., Carroll, K., Hammad, L. A., Karty, J. A., and Bauer, C. E. (2012) Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain. Mol. Microbiol. 85, 734-746
-
(2012)
Mol. Microbiol.
, vol.85
, pp. 734-746
-
-
Cheng, Z.1
Wu, J.2
Setterdahl, A.3
Reddie, K.4
Carroll, K.5
Hammad, L.A.6
Karty, J.A.7
Bauer, C.E.8
-
21
-
-
84874102375
-
RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid
-
Wu, J., Cheng, Z., Reddie, K., Carroll, K., Hammad, L. A., Karty, J. A., and Bauer, C. E. (2013) RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid. J. Biol. Chem. 288, 4755-4762
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 4755-4762
-
-
Wu, J.1
Cheng, Z.2
Reddie, K.3
Carroll, K.4
Hammad, L.A.5
Karty, J.A.6
Bauer, C.E.7
-
22
-
-
84865814021
-
Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy
-
Uchihashi, T., Kodera, N., and Ando, T. (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat. Protoc. 7, 1193-1206
-
(2012)
Nat. Protoc.
, vol.7
, pp. 1193-1206
-
-
Uchihashi, T.1
Kodera, N.2
Ando, T.3
-
23
-
-
84877779703
-
High-speed AFM and applications to biomolecular systems
-
Ando, T., Uchihashi, T., and Kodera, N. (2013) High-speed AFM and applications to biomolecular systems. Annu. Rev. Biophys. 42, 393-414
-
(2013)
Annu. Rev. Biophys.
, vol.42
, pp. 393-414
-
-
Ando, T.1
Uchihashi, T.2
Kodera, N.3
-
24
-
-
38349136783
-
Binary reducing equivalent pathways using NADPH-thioredoxin reductase and ferredoxin-thioredoxin reductase in the cyanobacterium Synechocystis sp. strain PCC 6803
-
Hishiya, S., Hatakeyama, W., Mizota, Y., Hosoya-Matsuda, N., Motohashi, K., Ikeuchi, M., and Hisabori, T. (2008) Binary reducing equivalent pathways using NADPH-thioredoxin reductase and ferredoxin-thioredoxin reductase in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol. 49, 11-18
-
(2008)
Plant Cell Physiol.
, vol.49
, pp. 11-18
-
-
Hishiya, S.1
Hatakeyama, W.2
Mizota, Y.3
Hosoya-Matsuda, N.4
Motohashi, K.5
Ikeuchi, M.6
Hisabori, T.7
-
25
-
-
0033593370
-
Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 Å resolution
-
Song, H., Parsons, M. R., Rowsell, S., Leonard, G., and Phillips, S. E. (1999) Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 Å resolution. J. Mol. Biol. 285, 1245-1256
-
(1999)
J. Mol. Biol.
, vol.285
, pp. 1245-1256
-
-
Song, H.1
Parsons, M.R.2
Rowsell, S.3
Leonard, G.4
Phillips, S.E.5
-
26
-
-
0034708342
-
High resolution crystal structure of bovine mitochondrial EF-Tu in complex with GDP
-
Andersen, G. R., Thirup, S., Spremulli, L. L., and Nyborg, J. (2000) High resolution crystal structure of bovine mitochondrial EF-Tu in complex with GDP. J. Mol. Biol. 297, 421-436
-
(2000)
J. Mol. Biol.
, vol.297
, pp. 421-436
-
-
Andersen, G.R.1
Thirup, S.2
Spremulli, L.L.3
Nyborg, J.4
-
27
-
-
0032569981
-
EF-Tu, a GTPase odyssey
-
Krab, I. M., and Parmeggiani, A. (1998) EF-Tu, a GTPase odyssey. Biochim. Biophys. Acta 1443, 1-22
-
(1998)
Biochim. Biophys. Acta
, vol.1443
, pp. 1-22
-
-
Krab, I.M.1
Parmeggiani, A.2
-
28
-
-
84864066091
-
Cofactor binding protects flavodoxin against oxidative stress
-
Lindhoud, S., van den Berg, W. A., van den Heuvel, R. H., Heck, A. J., van Mierlo, C. P., and van Berkel, W. J. (2012) Cofactor binding protects flavodoxin against oxidative stress. PLoS ONE 7, e41363
-
(2012)
PLoS ONE
, vol.7
-
-
Lindhoud, S.1
Van Den Berg, W.A.2
Van Den Heuvel, R.H.3
Heck, A.J.4
Van Mierlo, C.P.5
Van Berkel, W.J.6
-
29
-
-
34247868157
-
Towards a functional dissection of thioredoxin networks in plant cells
-
Hisabori, T., Motohashi, K., Hosoya-Matsuda, N., Ueoka-Nakanishi, H., and Romano, P. G. (2007) Towards a functional dissection of thioredoxin networks in plant cells. Photochem. Photobiol. 83, 145-151
-
(2007)
Photochem. Photobiol.
, vol.83
, pp. 145-151
-
-
Hisabori, T.1
Motohashi, K.2
Hosoya-Matsuda, N.3
Ueoka-Nakanishi, H.4
Romano, P.G.5
-
30
-
-
79959340042
-
Protein sulfenic acid formation: From cellular damage to redox regulation
-
Roos, G., and Messens, J. (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med. 51, 314-326
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 314-326
-
-
Roos, G.1
Messens, J.2
-
31
-
-
43549109795
-
Thioredoxin as a reducing agent for mammalian methionine sulfoxide reductases B lacking resolving cysteine
-
Kim, H. Y., and Kim, J. R. (2008) Thioredoxin as a reducing agent for mammalian methionine sulfoxide reductases B lacking resolving cysteine. Biochem. Biophys. Res. Commun. 371, 490-494
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.371
, pp. 490-494
-
-
Kim, H.Y.1
Kim, J.R.2
-
32
-
-
77952071893
-
Plant thioredoxin CDSP32 regenerates 1-cys methionine sulfoxide reductase B activity through the direct reduction of sulfenic acid
-
Tarrago, L., Laugier, E., Zaffagnini, M., Marchand, C. H., Le Maréchal, P., Lemaire, S. D., and Rey, P. (2010) Plant thioredoxin CDSP32 regenerates 1-cys methionine sulfoxide reductase B activity through the direct reduction of sulfenic acid. J. Biol. Chem. 285, 14964-14972
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 14964-14972
-
-
Tarrago, L.1
Laugier, E.2
Zaffagnini, M.3
Marchand, C.H.4
Le Maréchal, P.5
Lemaire, S.D.6
Rey, P.7
-
33
-
-
0037064080
-
Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
-
Yang, K. S., Kang, S. W., Woo, H. A., Hwang, S. C., Chae, H. Z., Kim, K., and Rhee, S. G. (2002) Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277, 38029-38036
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 38029-38036
-
-
Yang, K.S.1
Kang, S.W.2
Woo, H.A.3
Hwang, S.C.4
Chae, H.Z.5
Kim, K.6
Rhee, S.G.7
-
34
-
-
0019808019
-
Selective photooxidation of histidine residues in polypeptide chain elongation factor Tu from E. coli
-
Nakamura, S., and Kaziro, Y. (1981) Selective photooxidation of histidine residues in polypeptide chain elongation factor Tu from E. coli. J. Biochem. 90, 1117-1124
-
(1981)
J. Biochem.
, vol.90
, pp. 1117-1124
-
-
Nakamura, S.1
Kaziro, Y.2
-
35
-
-
84886365568
-
Roles of protein synthesis elongation factor EF-Tu in heat tolerance in plants
-
Fu, J., Momčilović, I., and Prasad, P. V. V. (2012) Roles of protein synthesis elongation factor EF-Tu in heat tolerance in plants. J. Bot. 10.1155/2012/835836
-
(2012)
J. Bot.
-
-
Fu, J.1
Momčilović, I.2
Prasad, P.V.V.3
-
36
-
-
0026726745
-
Site-directed mutagenesis of elongation factor Tu: The functional and structural role of residue Cys-81
-
Anborgh, P. H., Parmeggiani, A., and Jonák, J. (1992) Site-directed mutagenesis of elongation factor Tu: the functional and structural role of residue Cys-81. Eur. J. Biochem. 208, 251-257
-
(1992)
Eur. J. Biochem.
, vol.208
, pp. 251-257
-
-
Anborgh, P.H.1
Parmeggiani, A.2
Jonák, J.3
-
37
-
-
0027917990
-
The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation
-
Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. (1993) The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1, 35-50
-
(1993)
Structure
, vol.1
, pp. 35-50
-
-
Kjeldgaard, M.1
Nissen, P.2
Thirup, S.3
Nyborg, J.4
-
38
-
-
0027179878
-
Crystal structure of active elongation factor Tu reveals major domain rearrangements
-
Berchtold, H., Reshetnikova, L., Reiser, C. O., Schirmer, N. K., Sprinzl, M., and Hilgenfeld, R. (1993) Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126-132
-
(1993)
Nature
, vol.365
, pp. 126-132
-
-
Berchtold, H.1
Reshetnikova, L.2
Reiser, C.O.3
Schirmer, N.K.4
Sprinzl, M.5
Hilgenfeld, R.6
-
39
-
-
0016178264
-
Studies on the polypeptide elongation factors from E. Coli: Properties of various complexes containing EF-Tu and EF-Ts
-
Arai, K., Kawakita, M., and Kaziro, Y. (1974) Studies on the polypeptide elongation factors from E. coli: properties of various complexes containing EF-Tu and EF-Ts. J. Biochem. 76, 293-306
-
(1974)
J. Biochem.
, vol.76
, pp. 293-306
-
-
Arai, K.1
Kawakita, M.2
Kaziro, Y.3
-
40
-
-
0037140967
-
Thermodynamic properties of nucleotide-free EF-Tu from Thermus thermophilus in the presence of low-molecular weight effectors of its GTPase activity
-
Sedlák, E., Zoldák, G., Antalík, M., and Sprinzl, M. (2002) Thermodynamic properties of nucleotide-free EF-Tu from Thermus thermophilus in the presence of low-molecular weight effectors of its GTPase activity. Biochim. Biophys. Acta 1597, 22-27
-
(2002)
Biochim. Biophys. Acta
, vol.1597
, pp. 22-27
-
-
Sedlák, E.1
Zoldák, G.2
Antalík, M.3
Sprinzl, M.4
-
41
-
-
42949151399
-
The ferredoxin/thioredoxin system of oxygenic photosynthesis
-
Schürmann, P., and Buchanan, B. B. (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid. Redox Signal. 10, 1235-1274
-
(2008)
Antioxid. Redox Signal.
, vol.10
, pp. 1235-1274
-
-
Schürmann, P.1
Buchanan, B.B.2
-
42
-
-
20044391221
-
Thioredoxin affinity chromatography: A useful method for further understanding the thioredoxin network
-
Hisabori, T., Hara, S., Fujii, T., Yamazaki, D., Hosoya-Matsuda, N., and Motohashi, K. (2005) Thioredoxin affinity chromatography: a useful method for further understanding the thioredoxin network. J. Exp. Bot. 56, 1463-1468
-
(2005)
J. Exp. Bot.
, vol.56
, pp. 1463-1468
-
-
Hisabori, T.1
Hara, S.2
Fujii, T.3
Yamazaki, D.4
Hosoya-Matsuda, N.5
Motohashi, K.6
-
43
-
-
0346103649
-
Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different
-
Lindahl, M., and Florencio, F. J. (2003) Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proc. Natl. Acad. Sci. U.S.A. 100, 16107-16112
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 16107-16112
-
-
Lindahl, M.1
Florencio, F.J.2
-
44
-
-
0037422610
-
Proteomics gives insight into the regulatory function of chloroplast thioredoxins
-
Balmer, Y., Koller, A., del Val, G., Manieri, W., Schürmann, P., and Buchanan, B. B. (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc. Natl. Acad. Sci. U.S.A. 100, 370-375
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 370-375
-
-
Balmer, Y.1
Koller, A.2
Del Val, G.3
Manieri, W.4
Schürmann, P.5
Buchanan, B.B.6
-
45
-
-
2442498463
-
New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii
-
Lemaire, S. D., Guillon, B., Le Maréchal, P., Keryer, E., Miginiac-Maslow, M., and Decottignies, P. (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U.S.A. 101, 7475-7480
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 7475-7480
-
-
Lemaire, S.D.1
Guillon, B.2
Le Maréchal, P.3
Keryer, E.4
Miginiac-Maslow, M.5
Decottignies, P.6
|