메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Quantifying California current plankton samples with efficient machine learning techniques

Author keywords

image analysis; machine learning; zooplankton; Zooscan

Indexed keywords

IMAGE ANALYSIS; LEARNING SYSTEMS; PLANKTON;

EID: 84963976278     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.23919/oceans.2015.7404607     Document Type: Conference Paper
Times cited : (20)

References (13)
  • 1
    • 0141789766 scopus 로고    scopus 로고
    • CalCOFI: A half century of physical, chemical, and biological research in the California Current System
    • S. J. Bograd, D. A. Checkley, and Warren S. Wooster, "CalCOFI: A half century of physical, chemical, and biological research in the California Current System," Deep Sea Research Part II: Topical Studies in Oceanography, vol. 50, no. 14, pp. 2349-2353, 2003.
    • (2003) Deep Sea Research Part II: Topical Studies in Oceanography , vol.50 , Issue.14 , pp. 2349-2353
    • Bograd, S.J.1    Checkley, D.A.2    Wooster, W.S.3
  • 5
    • 3042783402 scopus 로고    scopus 로고
    • Enumeration, measurement, and identification of net zooplankton samples using the zooscan digital imaging system
    • P. Grosjean, M. Picheral, C. Warembourg, and G. Gorsky, "Enumeration, measurement, and identification of net zooplankton samples using the zooscan digital imaging system," ICES Journal of Marine Science: Journal du Conseil, vol. 61, no. 4, pp. 518-525, 2004
    • (2004) ICES Journal of Marine Science: Journal du Conseil , vol.61 , Issue.4 , pp. 518-525
    • Grosjean, P.1    Picheral, M.2    Warembourg, C.3    Gorsky, G.4
  • 6
    • 84860494839 scopus 로고    scopus 로고
    • Comparison of traditional microscopy and digitized image analysis to identify and delineate pelagicfish egg spatial distribution
    • S. Leli'evre, E. Antajan, and S. Vaz, "Comparison of traditional microscopy and digitized image analysis to identify and delineate pelagicfish egg spatial distribution," Journal of Plankton Research, vol. 34, no. 6, pp. 470-483, 2012.
    • (2012) Journal of Plankton Research , vol.34 , Issue.6 , pp. 470-483
    • Leli'Evre, S.1    Antajan, E.2    Vaz, S.3
  • 7
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • F. Pedregosa, et al. "Scikit-learn: Machine learning in Python. " The Journal of Machine Learning Research vol. 12, pp. 2825-2830, 2011
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 8
    • 84859771690 scopus 로고    scopus 로고
    • Size distribution of particles and zooplankton across the shelf-basin system in southeast beaufort sea: Combined results from an underwater vision profiler and vertical net tows
    • A. Forest, L. Stemmann, M. Picheral, L. Burdorf, D. Robert, L. Fortier, and M. Babin, "Size distribution of particles and zooplankton across the shelf-basin system in southeast beaufort sea: combined results from an underwater vision profiler and vertical net tows," Biogeosciences, vol. 9, no. 4, pp. 1301-1320, 2012.
    • (2012) Biogeosciences , vol.9 , Issue.4 , pp. 1301-1320
    • Forest, A.1    Stemmann, L.2    Picheral, M.3    Burdorf, L.4    Robert, D.5    Fortier, L.6    Babin, M.7
  • 9
    • 44649101375 scopus 로고    scopus 로고
    • Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry
    • H. M. Sosik and R. J. Olson, "Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry," Limnology and Oceanography: Methods, vol. 5, no. 6, pp. 204-216, 2007.
    • (2007) Limnology and Oceanography: Methods , vol.5 , Issue.6 , pp. 204-216
    • Sosik, H.M.1    Olson, R.J.2
  • 10
    • 42249094907 scopus 로고    scopus 로고
    • Support vector machine solvers
    • MIT Press
    • L. Bottou and C. Lin, "Support vector machine solvers," Large scale kernel machines, MIT Press, 2007, pp. 301-320, 2007.
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Bottou, L.1    Lin, C.2
  • 11
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Springer Berlin Heidelberg
    • Y. Bengio, "Practical recommendations for gradient-based training of deep architectures," Neural Networks: Tricks of the Trade, Springer Berlin Heidelberg, pp. 437-478, 2012.
    • (2012) Neural Networks: Tricks of the Trade , pp. 437-478
    • Bengio, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.