메뉴 건너뛰기




Volumn 23, Issue 2, 2016, Pages 387-395

Multilayered temporal modeling for the clinical domain

Author keywords

Allen's temporal interval relations; Document creation time; Electronic medical record; Narrative container; Natural language processing; Temporal relation discovery

Indexed keywords

BIOLOGY; HUMAN; HUMAN EXPERIMENT; INFORMATION SCIENCE; MODEL; SUPERVISED MACHINE LEARNING; ALGORITHM; ELECTRONIC HEALTH RECORD; EVALUATION STUDY; INFORMATION RETRIEVAL; NATURAL LANGUAGE PROCESSING; ORGANIZATION AND MANAGEMENT; PROCEDURES; TIME;

EID: 84963741141     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocv113     Document Type: Article
Times cited : (47)

References (47)
  • 1
    • 65349112142 scopus 로고    scopus 로고
    • Syndromic surveillance using ambulatory electronic health records
    • Hripcsak G, Soulakis ND, Li L, et al. Syndromic surveillance using ambulatory electronic health records. J Am Med Inform Assoc 2009;16(3):354-361.
    • (2009) J Am Med Inform Assoc , vol.16 , Issue.3 , pp. 354-361
    • Hripcsak, G.1    Soulakis, N.D.2    Li, L.3
  • 2
    • 0030665708 scopus 로고    scopus 로고
    • Temporal reasoning and temporal data maintenance in medicine: issues and challenges
    • Combi C, Shahar Y. Temporal reasoning and temporal data maintenance in medicine: issues and challenges. Comput Biol Med 1997:27(5):353-368.
    • (1997) Comput Biol Med , vol.27 , Issue.5 , pp. 353-368
    • Combi, C.1    Shahar, Y.2
  • 3
    • 0029448321 scopus 로고
    • A comparison of the temporal expressiveness of three database query methods
    • IEEE Computer Society Press
    • Das AK, Musen MA. A comparison of the temporal expressiveness of three database query methods. In Annual Symposium on Computer Applications in Medical Care 1995. IEEE Computer Society Press.
    • (1995) Annual Symposium on Computer Applications in Medical Care
    • Das, A.K.1    Musen, M.A.2
  • 4
    • 0026020799 scopus 로고
    • Extensions to the time-oriented database model to support temporal reasoning in medical expert systems
    • Kahn MG, Fagan LM, Tu S. Extensions to the time-oriented database model to support temporal reasoning in medical expert systems. Methods Inform Med 1990;30(1):4-14.
    • (1990) Methods Inform Med , vol.30 , Issue.1 , pp. 4-14
    • Kahn, M.G.1    Fagan, L.M.2    Tu, S.3
  • 5
    • 25444467168 scopus 로고    scopus 로고
    • White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study
    • Schmidt R, Ropele S, Enzinger C, et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann Neurol 2005;58(4):610-6.
    • (2005) Ann Neurol , vol.58 , Issue.4 , pp. 610-616
    • Schmidt, R.1    Ropele, S.2    Enzinger, C.3
  • 6
    • 33847640080 scopus 로고    scopus 로고
    • Temporal reasoning with medical data-a review with emphasis on medical natural language processing
    • Zhou L, Hripcsak G. Temporal reasoning with medical data-a review with emphasis on medical natural language processing. J Biomed Inform 2007;40(2):183-202.
    • (2007) J Biomed Inform , vol.40 , Issue.2 , pp. 183-202
    • Zhou, L.1    Hripcsak, G.2
  • 12
    • 79951501657 scopus 로고    scopus 로고
    • Towards temporal relation discovery from the clinical narrative
    • San Francisco, USA: American Medical Informatics Association
    • Savova G, Bethard S, Styler W, et al. Towards temporal relation discovery from the clinical narrative. In: AMIA Annual Symposium Proceedings. San Francisco, USA: American Medical Informatics Association; 2009.
    • (2009) AMIA Annual Symposium Proceedings.
    • Savova, G.1    Bethard, S.2    Styler, W.3
  • 14
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating temporal relations in clinical text: 2012 i2b2 Challenge
    • Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical text: 2012 i2b2 Challenge. J Am Med Inform Assoc 2013;20(5):806-13.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.5 , pp. 806-813
    • Sun, W.1    Rumshisky, A.2    Uzuner, O.3
  • 15
    • 84878170379 scopus 로고    scopus 로고
    • Increasing informativeness in temporal annotation
    • Portland, Oregon, USA: Association for Computational Linguistics
    • Pustejovsky J, Stubbs A. Increasing informativeness in temporal annotation. In: Proceedings of the 5th Linguistic Annotation Workshop. Portland, Oregon, USA: Association for Computational Linguistics; 2011.
    • (2011) Proceedings of the 5th Linguistic Annotation Workshop.
    • Pustejovsky, J.1    Stubbs, A.2
  • 16
    • 84963715965 scopus 로고    scopus 로고
    • accessed 29 Jul
    • THYME, http://thyme.healthnlp.org. accessed 29 Jul 2015.
    • (2015)
  • 20
    • 0019646082 scopus 로고
    • An interval-based representation of temporal knowledge
    • San Francisco, USA: Vancouver, Canada: Morgan Kaufmann Publishers
    • Allen JF. An interval-based representation of temporal knowledge. In:IJCAI. 1981. San Francisco, USA: Vancouver, Canada: Morgan Kaufmann Publishers, pp. 221-226.
    • (1981) IJCAI. , pp. 221-226
    • Allen, J.F.1
  • 21
    • 84992072305 scopus 로고    scopus 로고
    • Discovering narrative containers in clinical text
    • Sofia, Bulgaria
    • Miller TA, Bethard S, Dligach D, et al. Discovering narrative containers in clinical text. In ACL 2013. Sofia, Bulgaria. p. 18.
    • ACL 2013. , pp. 18
    • Miller, T.A.1    Bethard, S.2    Dligach, D.3
  • 23
    • 84963737672 scopus 로고    scopus 로고
    • accessed 29 Jul
    • TempEval C, http://alt.qcri.org/semeval2015/task6/. accessed 29 Jul 2015.
    • (2015)
    • TempEval, C.1
  • 24
    • 84882748440 scopus 로고    scopus 로고
    • A` la Recherche du Temps Perdu: extracting temporal relations from medical text in the 2012 i2b2 NLP challenge
    • p. amiajnl-2013-001624
    • Cherry C, Zhu X, Martin J, et al. A` la Recherche du Temps Perdu: extracting temporal relations from medical text in the 2012 i2b2 NLP challenge. J Am Med Inform Assoc 2013; p. amiajnl-2013-001624.
    • (2013) J Am Med Inform Assoc
    • Cherry, C.1    Zhu, X.2    Martin, J.3
  • 25
  • 26
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A Library for Large Linear Classication
    • Fan R, Chang K, Hsieh C, et al. LIBLINEAR: A Library for Large Linear Classication. J Mach Learn Res 2008;9:4.
    • (2008) J Mach Learn Res , vol.9 , pp. 4
    • Fan, R.1    Chang, K.2    Hsieh, C.3
  • 27
    • 84882800112 scopus 로고    scopus 로고
    • An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge
    • Xu Y, Wang Y, Liu T, et al. An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge. J Am Med Inform Assoc 2013;20(5):849-58.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.5 , pp. 849-858
    • Xu, Y.1    Wang, Y.2    Liu, T.3
  • 28
    • 84881139675 scopus 로고    scopus 로고
    • A hybrid system for temporal information extraction from clinical text
    • amiajnl-2013-001635
    • Tang B, Wu Y, Jiang M, et al. A hybrid system for temporal information extraction from clinical text. J Am Med Inform Assoc 2013; p. amiajnl-2013-001635.
    • (2013) J Am Med Inform Assoc
    • Tang, B.1    Wu, Y.2    Jiang, M.3
  • 29
    • 77952766987 scopus 로고    scopus 로고
    • A user's guide to support vector machines
    • Ben-Hur A, Weston J. A user's guide to support vector machines. Methods Mol Biol 2010;609:223-39.
    • (2010) Methods Mol Biol , vol.609 , pp. 223-239
    • Ben-Hur, A.1    Weston, J.2
  • 30
    • 84963760639 scopus 로고    scopus 로고
    • accessed 29 July
    • Unified Medical Language System (UMLS). http://www.nlm.nih.gov/ research/umls/. accessed 29 July 2015.
    • (2015)
  • 32
    • 84901834501 scopus 로고    scopus 로고
    • Discovering body site and severity modifiers in clinical texts
    • amiajnl-2013-001766
    • Dligach D, Bethard S, Becker L, et al. Discovering body site and severity modifiers in clinical texts. J Am Med Inform Assoc 2013: p. amiajnl-2013-001766.
    • (2013) J Am Med Inform Assoc
    • Dligach, D.1    Bethard, S.2    Becker, L.3
  • 33
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova G, Masanz J, Ogren P, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010;17(5):507-13.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.5 , pp. 507-513
    • Savova, G.1    Masanz, J.2    Ogren, P.3
  • 34
    • 84963761519 scopus 로고    scopus 로고
    • accessed 29 Jul
    • Apache Clinical Text Analysis and Knowledge Extraction System (cTAKES). http://ctakes.apache.org, accessed 29 Jul 2015.
    • (2015)
  • 36
    • 0014675715 scopus 로고
    • The signed-rank (Wilcoxon) test
    • Miller E. The signed-rank (Wilcoxon) test. Lancet 1969;1(7590):371.
    • (1969) Lancet , vol.1 , Issue.7590 , pp. 371
    • Miller, E.1
  • 37
    • 84986887437 scopus 로고    scopus 로고
    • Automatic identification of methotrexateinduced liver toxicity in patients with rheumatoid arthritis from the electronic medical record
    • amiajnl-2014-002642
    • Lin C, Karlson EW, Dligach D, et al. Automatic identification of methotrexateinduced liver toxicity in patients with rheumatoid arthritis from the electronic medical record. J Am Med Inform Assoc 2014; p. amiajnl-2014-002642.
    • (2014) J Am Med Inform Assoc
    • Lin, C.1    Karlson, E.W.2    Dligach, D.3
  • 38
    • 73949148257 scopus 로고    scopus 로고
    • TN-TIES: A system for extracting temporal information from emergency department triage notes
    • Irvine AK, Haas SW, Sullivan T. TN-TIES: A system for extracting temporal information from emergency department triage notes. AMIA Annu Symp Proc 2008:328-32.
    • (2008) AMIA Annu Symp Proc , pp. 328-332
    • Irvine, A.K.1    Haas, S.W.2    Sullivan, T.3
  • 39
    • 84927943705 scopus 로고    scopus 로고
    • Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
    • Nikfarjam A, Sarker A, O'Connor K, et al. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc 2015; p. ocu041
    • (2015) J Am Med Inform Assoc
    • Nikfarjam, A.1    Sarker, A.2    O'Connor, K.3
  • 40
    • 84917682890 scopus 로고    scopus 로고
    • Joint modelling of repeated measurements and time-to-event outcomes: flexible model specification and exact likelihood inference
    • Barrett J, Diggle P, Henderson R, et al. Joint modelling of repeated measurements and time-to-event outcomes: flexible model specification and exact likelihood inference. J R Stat Soc Series B Stat Methodol 2015;77(1):131-48.
    • (2015) J R Stat Soc Series B Stat Methodol , vol.77 , Issue.1 , pp. 131-148
    • Barrett, J.1    Diggle, P.2    Henderson, R.3
  • 41
    • 84995804501 scopus 로고    scopus 로고
    • Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events
    • 0962280214526199
    • Li Q, Pan J, Belcher J. Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events. Stat Methods Med Res 2014: p. 0962280214526199.
    • (2014) Stat Methods Med Res
    • Li, Q.1    Pan, J.2    Belcher, J.3
  • 42
    • 41149167559 scopus 로고    scopus 로고
    • Joint inference for nonlinear mixed-effects models and time to event at the presence of missing data
    • Wu L, Hu XJ, Wu H. Joint inference for nonlinear mixed-effects models and time to event at the presence of missing data. Biostatistics 2008;9(2):308-20.
    • (2008) Biostatistics , vol.9 , Issue.2 , pp. 308-320
    • Wu, L.1    Hu, X.J.2    Wu, H.3
  • 46
    • 24844435842 scopus 로고    scopus 로고
    • University of California at Santa Cruz: Technical report, Department of Computer Science; 1999. Technical Report UCSC-CRL-99-10
    • Haussler D. Convolution Kernels on Discrete Structures. 1999. University of California at Santa Cruz: Technical report, Department of Computer Science; 1999. Technical Report UCSC-CRL-99-10.
    • (1999) Convolution Kernels on Discrete Structures.
    • Haussler, D.1
  • 47
    • 85084287330 scopus 로고    scopus 로고
    • A study on dependency tree kernels for automatic extraction of protein-protein interaction
    • Portland, Oregon, USA: Association for Computational Linguistics;
    • Chowdhury FM, Lavelli A, Moschitti A. A study on dependency tree kernels for automatic extraction of protein-protein interaction. In:Proceedings of BioNLP 2011 Workshop. Portland, Oregon, USA: Association for Computational Linguistics; 2011.
    • (2011) Proceedings of BioNLP 2011 Workshop.
    • Chowdhury, F.M.1    Lavelli, A.2    Moschitti, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.