메뉴 건너뛰기




Volumn 28, Issue 6, 2017, Pages 1452-1465

Label Propagation via Teaching-to-Learn and Learning-to-Teach

Author keywords

Label propagation; machine teaching; semisupervised learning

Indexed keywords

ALGORITHMS; GRAPHIC METHODS; ITERATIVE METHODS; VIRTUAL REALITY;

EID: 84963704558     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2016.2514360     Document Type: Article
Times cited : (147)

References (46)
  • 2
    • 84898778919 scopus 로고    scopus 로고
    • Discriminative label propagation for multi-object tracking with sporadic appearance features
    • Sydney, NSW, Australia, Dec.
    • K. C. A. Kumar and C. De Vleeschouwer, "Discriminative label propagation for multi-object tracking with sporadic appearance features," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Sydney, NSW, Australia, Dec. 2013, pp. 2000-2007.
    • (2013) Proc. IEEE Int. Conf. Comput. Vis. (ICCV) , pp. 2000-2007
    • Kumar, K.C.A.1    De Vleeschouwer, C.2
  • 4
    • 84874246565 scopus 로고    scopus 로고
    • Balanced label propagation for partitioning massive graphs
    • Rome, Italy, Feb.
    • J. Ugander and L. Backstrom, "Balanced label propagation for partitioning massive graphs," in Proc. 6th ACM Int. Conf. Web Search Data Mining, Rome, Italy, Feb. 2013, pp. 507-516.
    • (2013) Proc. 6th ACM Int. Conf. Web Search Data Mining , pp. 507-516
    • Ugander, J.1    Backstrom, L.2
  • 6
    • 84858874031 scopus 로고    scopus 로고
    • Partially labeled classification with markov random walks
    • Vancouver, BC, Canada, Dec.
    • M. Szummer and T. Jaakkola, "Partially labeled classification with Markov random walks," in Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2002, pp. 945-952.
    • (2002) Proc. Adv. Neural Inf. Process. Syst. , pp. 945-952
    • Szummer, M.1    Jaakkola, T.2
  • 10
    • 84898798794 scopus 로고    scopus 로고
    • Dynamic label propagation for semi-supervised multi-class multi-label classification
    • Sydney, NSW, Australia, Dec.
    • B. Wang, Z. Tu, and J. K. Tsotsos, "Dynamic label propagation for semi-supervised multi-class multi-label classification," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Sydney, NSW, Australia, Dec. 2013, pp. 425-432.
    • (2013) Proc. IEEE Int. Conf. Comput. Vis. (ICCV) , pp. 425-432
    • Wang, B.1    Tu, Z.2    Tsotsos, J.K.3
  • 11
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • Haifa, Israel, Jun.
    • W. Liu, J. He, and S.-F. Chang, "Large graph construction for scalable semi-supervised learning," in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010, pp. 679-686.
    • (2010) Proc. 27th Int. Conf. Mach. Learn. , pp. 679-686
    • Liu, W.1    He, J.2    Chang, S.-F.3
  • 12
    • 84919924897 scopus 로고    scopus 로고
    • Efficient label propagation
    • Beijing, China, Jun.
    • Y. Fujiwara and G. Irie, "Efficient label propagation," in Proc. Int. Conf. Mach. Learn., Beijing, China, Jun. 2014, pp. 784-792.
    • (2014) Proc. Int. Conf. Mach. Learn. , pp. 784-792
    • Fujiwara, Y.1    Irie, G.2
  • 13
    • 84939789704 scopus 로고    scopus 로고
    • Fick's law assisted propagation for semisupervised learning
    • Sep.
    • C. Gong, D. Tao, K. Fu, and J. Yang, "Fick's law assisted propagation for semisupervised learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 9, pp. 2148-2162, Sep. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.9 , pp. 2148-2162
    • Gong, C.1    Tao, D.2    Fu, K.3    Yang, J.4
  • 14
    • 84887988371 scopus 로고    scopus 로고
    • Multiple graph label propagation by sparse integration
    • Dec.
    • M. Karasuyama and H. Mamitsuka, "Multiple graph label propagation by sparse integration," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 1999-2012, Dec. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.12 , pp. 1999-2012
    • Karasuyama, M.1    Mamitsuka, H.2
  • 17
    • 0027636611 scopus 로고
    • Learning and development in neural networks: The importance of starting small
    • Jul.
    • J. L. Elman, "Learning and development in neural networks: The importance of starting small," Cognition, vol. 48, no. 1, pp. 71-99, Jul. 1993.
    • (1993) Cognition , vol.48 , Issue.1 , pp. 71-99
    • Elman, J.L.1
  • 18
    • 85162562509 scopus 로고    scopus 로고
    • How do humans teach: On curriculum learning and teaching dimension
    • Granada, Spain, Dec.
    • F. Khan, B. Mutlu, and X. Zhu, "How do humans teach: On curriculum learning and teaching dimension," in Proc. Adv. Neural Inf. Process. Syst., Granada, Spain, Dec. 2011, pp. 1449-1457.
    • (2011) Proc. Adv. Neural Inf. Process. Syst. , pp. 1449-1457
    • Khan, F.1    Mutlu, B.2    Zhu, X.3
  • 20
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • Vancouver, BC, Canada, Dec.
    • M. P. Kumar, B. Packer, and D. Koller, "Self-paced learning for latent variable models," in Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2010, pp. 1189-1197.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 1189-1197
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 23
    • 0000231185 scopus 로고
    • Teachability in computational learning
    • Feb.
    • A. Shinohara and S. Miyano, "Teachability in computational learning," New Generat. Comput., vol. 8, no. 4, pp. 337-347, Feb. 1991.
    • (1991) New Generat. Comput. , vol.8 , Issue.4 , pp. 337-347
    • Shinohara, A.1    Miyano, S.2
  • 24
    • 33746075565 scopus 로고    scopus 로고
    • Teaching randomized learners
    • Pittsburgh, PA, USA, Jun.
    • F. J. Balbach and T. Zeugmann, "Teaching randomized learners," in Proc. Annu. Conf. Learn. Theory, Pittsburgh, PA, USA, Jun. 2006, pp. 229-243.
    • (2006) Proc. Annu. Conf. Learn. Theory , pp. 229-243
    • Balbach, F.J.1    Zeugmann, T.2
  • 26
  • 27
    • 84899025815 scopus 로고    scopus 로고
    • Machine teaching for Bayesian learners in the exponential family
    • Lake Tahoe, NV, USA, Dec.
    • X. Zhu, "Machine teaching for Bayesian learners in the exponential family," in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, Dec. 2013, pp. 1905-1913.
    • (2013) Proc. Adv. Neural Inf. Process. Syst. , pp. 1905-1913
    • Zhu, X.1
  • 28
    • 84937875010 scopus 로고    scopus 로고
    • Optimal teaching for limited-capacity human learners
    • Montreal, QC, Canada, Dec.
    • K. R. Patil, X. Zhu, L. Kopeć, and B. C. Love, "Optimal teaching for limited-capacity human learners," in Proc. Adv. Neural Inf. Process. Syst., Montreal, QC, Canada, Dec. 2014, pp. 2465-2473.
    • (2014) Proc. Adv. Neural Inf. Process. Syst. , pp. 2465-2473
    • Patil, K.R.1    Zhu, X.2    Kopeć, L.3    Love, B.C.4
  • 29
    • 84995373638 scopus 로고    scopus 로고
    • Machine teaching: An inverse problem to machine learning and an approach toward optimal education
    • Austin, TX, USA, Jan.
    • X. Zhu, "Machine teaching: An inverse problem to machine learning and an approach toward optimal education," in Proc. AAAI Conf. Artif. Intell. (AAAI), Austin, TX, USA, Jan. 2015, pp. 2078-2086.
    • (2015) Proc. AAAI Conf. Artif. Intell. (AAAI) , pp. 2078-2086
    • Zhu, X.1
  • 30
    • 84977967981 scopus 로고    scopus 로고
    • Using machine teaching to identify optimal training-set attacks on machine learners
    • Austin, TX, USA, Jan.
    • S. Mei and X. Zhu, "Using machine teaching to identify optimal training-set attacks on machine learners," in Proc. AAAI Conf. Artif. Intell. (AAAI), Austin, TX, USA, Jan. 2015, pp. 1-7.
    • (2015) Proc. AAAI Conf. Artif. Intell. (AAAI) , pp. 1-7
    • Mei, S.1    Zhu, X.2
  • 33
    • 34548729173 scopus 로고    scopus 로고
    • Clustering and embedding using commute times
    • Nov.
    • H. Qiu and E. R. Hancock, "Clustering and embedding using commute times," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 11, pp. 1873-1890, Nov. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.11 , pp. 1873-1890
    • Qiu, H.1    Hancock, E.R.2
  • 35
    • 84879905842 scopus 로고    scopus 로고
    • A feasible method for optimization with orthogonality constraints
    • Dec.
    • Z. Wen and W. Yin, "A feasible method for optimization with orthogonality constraints," Math. Program., vol. 142, no. 1, pp. 397-434, Dec. 2013.
    • (2013) Math. Program. , vol.142 , Issue.1 , pp. 397-434
    • Wen, Z.1    Yin, W.2
  • 36
    • 84861639358 scopus 로고    scopus 로고
    • Projection-like retractions on matrix manifolds
    • Jan.
    • P.-A. Absil and J. Malick, "Projection-like retractions on matrix manifolds," SIAM J. Optim., vol. 22, no. 1, pp. 135-158, Jan. 2012.
    • (2012) SIAM J. Optim. , vol.22 , Issue.1 , pp. 135-158
    • Absil, P.-A.1    Malick, J.2
  • 37
    • 33746427463 scopus 로고    scopus 로고
    • On the barzilai-borwein method
    • New York, NY, USA: Springer
    • R. Fletcher, "On the Barzilai-Borwein method," in Optimization and Control With Applications. New York, NY, USA: Springer, 2005, pp. 235-256.
    • (2005) Optimization and Control with Applications , pp. 235-256
    • Fletcher, R.1
  • 38
    • 0030303858 scopus 로고    scopus 로고
    • Convergence properties of an augmented lagrangian algorithm for optimization with a combination of general equality and linear constraints
    • Jul.
    • A. R. Conn, N. Gould, A. Sartenaer, and P. L. Toint, "Convergence properties of an augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints," SIAM J. Optim., vol. 6, no. 3, pp. 674-703, Jul. 1996.
    • (1996) SIAM J. Optim. , vol.6 , Issue.3 , pp. 674-703
    • Conn, A.R.1    Gould, N.2    Sartenaer, A.3    Toint, P.L.4
  • 39
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • Washington, DC, USA, Aug.
    • X. Zhu, Z. Ghahramani, and J. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. Int. Conf. Mach. Learn., Washington, DC, USA, Aug. 2003, pp. 912-919.
    • (2003) Proc. Int. Conf. Mach. Learn. , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 40
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed. Baltimore, MD, USA: The Johns Hopkins Univ. Press
    • G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: The Johns Hopkins Univ. Press, 2012.
    • (2012) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 42
    • 0024682770 scopus 로고
    • Updating the inverse of a matrix
    • Jun.
    • W. W. Hager, "Updating the inverse of a matrix," SIAM Rev., vol. 31, no. 2, pp. 221-239, Jun. 1989.
    • (1989) SIAM Rev. , vol.31 , Issue.2 , pp. 221-239
    • Hager, W.W.1
  • 43
    • 84899028598 scopus 로고    scopus 로고
    • Manifold-based similarity adaptation for label propagation
    • Lake Tahoe, NV, USA, Dec.
    • M. Karasuyama and H. Mamitsuka, "Manifold-based similarity adaptation for label propagation," in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, Dec. 2013, pp. 1547-1555.
    • (2013) Proc. Adv. Neural Inf. Process. Syst. , pp. 1547-1555
    • Karasuyama, M.1    Mamitsuka, H.2
  • 45
    • 56449085512 scopus 로고    scopus 로고
    • Graph transduction via alternating minimization
    • Helsinki, Finland, Jul.
    • J. Wang, T. Jebara, and S.-F. Chang, "Graph transduction via alternating minimization," in Proc. Int. Conf. Mach. Learn., Helsinki, Finland, Jul. 2008, pp. 1144-1151.
    • (2008) Proc. Int. Conf. Mach. Learn. , pp. 1144-1151
    • Wang, J.1    Jebara, T.2    Chang, S.-F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.