메뉴 건너뛰기




Volumn , Issue , 2013, Pages 425-432

Dynamic label propagation for semi-supervised multi-class multi-label classification

Author keywords

Dynamic Label Propagation; Multi class; Multi label

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 84898798794     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.60     Document Type: Conference Paper
Times cited : (122)

References (38)
  • 2
    • 34547998923 scopus 로고    scopus 로고
    • The rendezvous algorithm: Multiclass semisupervised lenaring with markov random walks
    • A. Azran. The rendezvous algorithm: multiclass semisupervised lenaring with markov random walks. Proc. of ICML, pages 49-56, 2007.
    • (2007) Proc. of ICML , pp. 49-56
    • Azran, A.1
  • 4
    • 56049113809 scopus 로고    scopus 로고
    • Semisupervised laplacian regularization of kernel canonical correlation analysis
    • M. B. Blaschko, C. H. Lampert, and A. Gretton. Semisupervised laplacian regularization of kernel canonical correlation analysis. In Proceedings of ECMLKDD, pages 133-145, 2008.
    • (2008) Proceedings of ECMLKDD , pp. 133-145
    • Blaschko, M.B.1    Lampert, C.H.2    Gretton, A.3
  • 5
    • 0002993682 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proc. of COLT, 1998.
    • (1998) Proc. of COLT
    • Blum, A.1    Mitchell, T.2
  • 7
    • 78651102750 scopus 로고    scopus 로고
    • Semi-supervised multilabel learning by solving a sylvester equation
    • G. Chen, Y. Song, and F. Wang. Semi-supervised multilabel learning by solving a sylvester equation. Proc of SDM, 6(10):28-30, 2008.
    • (2008) Proc of SDM , vol.6 , Issue.10 , pp. 28-30
    • Chen, G.1    Song, Y.2    Wang, F.3
  • 8
    • 0036993293 scopus 로고    scopus 로고
    • A new family of online algirithms for category ranking
    • K. Crammer and Y. Singer. A new family of online algirithms for category ranking. Proc. of SIGIR, 2002.
    • (2002) Proc. of SIGIR
    • Crammer, K.1    Singer, Y.2
  • 11
    • 84898960512 scopus 로고    scopus 로고
    • Constraint classification for multiclass classification and ranking
    • MIT Press
    • S. Har-peled, D. Roth, and D. Zimak. Constraint classification for multiclass classification and ranking. In Proc.of NIPS, pages 785-792. MIT Press, 2003.
    • (2003) Proc.Of NIPS , pp. 785-792
    • Har-Peled, S.1    Roth, D.2    Zimak, D.3
  • 12
    • 84863056123 scopus 로고    scopus 로고
    • Unsupervised metric learning by self-smoothing operator
    • J. Jiang, B. Wang, and Z. Tu. Unsupervised metric learning by self-smoothing operator. In ICCV, pages 794-801, 2011.
    • (2011) ICCV , pp. 794-801
    • Jiang, J.1    Wang, B.2    Tu, Z.3
  • 13
    • 33845583962 scopus 로고    scopus 로고
    • Correlated label propagation with application to multi-label learning
    • F. Kang, R. Jin, and R. Sukthankar. Correlated label propagation with application to multi-label learning. In Proc. of CVPR, pages 1719-1726, 2006.
    • (2006) Proc. of CVPR , pp. 1719-1726
    • Kang, F.1    Jin, R.2    Sukthankar, R.3
  • 14
    • 84886507555 scopus 로고    scopus 로고
    • Transductive multilabel learning via label set propagation
    • X. Kong, M. K. Ng, and Z.-H. Zhou. Transductive multilabel learning via label set propagation. TKDE, 99, 2011.
    • (2011) TKDE , vol.99
    • Kong, X.1    Ng, M.K.2    Zhou, Z.-H.3
  • 15
    • 33746476985 scopus 로고    scopus 로고
    • Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization
    • S. Lafon and A. B. Lee. Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Trans. on PAMI, 28(9):1393-1403, 2006.
    • (2006) IEEE Trans. on PAMI , vol.28 , Issue.9 , pp. 1393-1403
    • Lafon, S.1    Lee, A.B.2
  • 16
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik and C. Schmid. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proc. of CVPR, 2006.
    • (2006) Proc. of CVPR
    • Lazebnik, S.1    Schmid, C.2
  • 17
    • 33750718803 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In Proc. of AAAI, pages 421-426, 2006.
    • (2006) Proc. of AAAI , pp. 421-426
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 18
    • 57949087742 scopus 로고    scopus 로고
    • Multi-class semi-supervised learning with the e-truncted multinomial probit gaussian process
    • S. Rogers and M. Girolami. Multi-class semi-supervised learning with the e-truncted multinomial probit gaussian process. Journal of Machine Learning Research, (1):17-32, 2007.
    • (2007) Journal of Machine Learning Research , vol.1 , pp. 17-32
    • Rogers, S.1    Girolami, M.2
  • 20
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embeddin
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 21
    • 70450219022 scopus 로고    scopus 로고
    • Regularized multiclass semi-supervised boosting
    • A. Saffari, C. Leistner, and H. Bischof. Regularized multiclass semi-supervised boosting. In CVPR, 2009.
    • (2009) CVPR
    • Saffari, A.1    Leistner, C.2    Bischof, H.3
  • 23
    • 79952257762 scopus 로고    scopus 로고
    • Efficient graphbased semi-supervised learning of structured tagging models
    • A. Subramanya, S. Petrov, and F. Pereira. Efficient graphbased semi-supervised learning of structured tagging models. In Proc. of EMNLP, pages 167-176, 2010.
    • (2011) Proc. of EMNLP , pp. 167-176
    • Subramanya, A.1    Petrov, S.2    Pereira, F.3
  • 24
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2322, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2322
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 25
    • 56049114479 scopus 로고    scopus 로고
    • Semi-supervised boosting for multi-class classification
    • H. Valizadegan, R. Jin, and A. K. Jain. Semi-supervised boosting for multi-class classification. In Proc. of ECML PKDD, pages 522-537, 2008.
    • (2008) Proc. of ECML PKDD , pp. 522-537
    • Valizadegan, H.1    Jin, R.2    Jain, A.K.3
  • 26
    • 84866689522 scopus 로고    scopus 로고
    • Unsupervised metric fusion by cross diffusion
    • B. Wang, J. Jiang, W. Wang, Z.-H. Zhou, and Z. Tu. Unsupervised metric fusion by cross diffusion. In CVPR, pages 2997-3004, 2012.
    • (2012) CVPR , pp. 2997-3004
    • Wang, B.1    Jiang, J.2    Wang, W.3    Zhou, Z.-H.4    Tu, Z.5
  • 27
    • 84866708964 scopus 로고    scopus 로고
    • Affinity learning via self-diffusion for image segmentation and clustering
    • B. Wang and Z. Tu. Affinity learning via self-diffusion for image segmentation and clustering. In CVPR, pages 2312-2319, 2012.
    • (2012) CVPR , pp. 2312-2319
    • Wang, B.1    Tu, Z.2
  • 29
    • 33749257955 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q.Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. In Proceedings of NIPS, pages 1473-1480, 2006.
    • (2006) Proceedings of NIPS , pp. 1473-1480
    • Weinberger, K.1    Blitzer, J.2    Saul, L.K.3
  • 30
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell. Distance metric learning with application to clustering with side-information. In Proc. of NIPS, pages 505-512, 2002.
    • (2002) Proc. of NIPS , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.J.4
  • 31
    • 56449089515 scopus 로고    scopus 로고
    • Unsupervised and semisupervised multi-class support vector machines
    • L. Xu and D. Schuurmans. Unsupervised and semisupervised multi-class support vector machines. In Proc. of AAAI, 2005.
    • (2005) Proc. of AAAI
    • Xu, L.1    Schuurmans, D.2
  • 32
    • 70450193357 scopus 로고    scopus 로고
    • Improving shape retrieval by learning graph transduction
    • X. Yang, X. Bai, L. Latecki, and Z. Tu. Improving shape retrieval by learning graph transduction. In Proc. of ECCV, 2008.
    • (2008) Proc. of ECCV
    • Yang, X.1    Bai, X.2    Latecki, L.3    Tu, Z.4
  • 33
    • 84885640929 scopus 로고    scopus 로고
    • Multi-label informed latent semantic indexing
    • K. Yu, S. Yu, and V. Tresp. Multi-label informed latent semantic indexing. In Proc. of SIGIR, pages 258-265, 2005.
    • (2005) Proc. of SIGIR , pp. 258-265
    • Yu, K.1    Yu, S.2    Tresp, V.3
  • 36
    • 84885572482 scopus 로고    scopus 로고
    • Multi-labelled classification using maximum entropy method
    • S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum entropy method. In Proc. of SIGIR, pages 274-281, 2005.
    • (2005) Proc. of SIGIR , pp. 274-281
    • Zhu, S.1    Ji, X.2    Xu, W.3    Gong, Y.4
  • 37
    • 33744955193 scopus 로고    scopus 로고
    • Doctoral thesis, Department of Computer Science, Carnegie Mellon University
    • X. Zhu. Semi-supervised Learning with Graphs. Doctoral thesis, Department of Computer Science, Carnegie Mellon University, 2005.
    • (2005) Semi-supervised Learning with Graphs
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.