-
1
-
-
84916537550
-
Bayesian Analysis of Binary and Polychotomous Response Data
-
Albert, J.H., and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous Response Data,” Journal of the American Statistical Association, 88, 669–679.
-
(1993)
Journal of the American Statistical Association
, vol.88
, pp. 669-679
-
-
Albert, J.H.1
Chib, S.2
-
2
-
-
84878094378
-
Generalized Double Pareto Shrinkage
-
Armagan, A., Dunson, D.B., and Lee, J. (2013), “Generalized Double Pareto Shrinkage,” Statistica Sinica, 23, 119–143.
-
(2013)
Statistica Sinica
, vol.23
, pp. 119-143
-
-
Armagan, A.1
Dunson, D.B.2
Lee, J.3
-
5
-
-
77952811536
-
The Horseshoe Estimator for Sparse Signals
-
Carvalho, C.M., Polson, N.G., and Scott, J.G. (2010), “The Horseshoe Estimator for Sparse Signals,” Biometrika, 97, 465–480.
-
(2010)
Biometrika
, vol.97
, pp. 465-480
-
-
Carvalho, C.M.1
Polson, N.G.2
Scott, J.G.3
-
6
-
-
35148829045
-
Mean-field Variational Approximate Bayesian Inference for Latent Variable Models
-
Consonni, G., and Marin, J.-M. (2007), “Mean-field Variational Approximate Bayesian Inference for Latent Variable Models,” Computational Statistics and Data Analysis, 52, 790–798.
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, pp. 790-798
-
-
Consonni, G.1
Marin, J.-M.2
-
9
-
-
80054689997
-
Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
-
Faes, C., Ormerod, J.T., and Wand, M.P. (2011), “Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data,” Journal of the American Statistical Association, 106, 959–971.
-
(2011)
Journal of the American Statistical Association
, vol.106
, pp. 959-971
-
-
Faes, C.1
Ormerod, J.T.2
Wand, M.P.3
-
10
-
-
52349093473
-
A Spatio-Temporal Methodology for Real-time Biosurveillance
-
Fricker, R.D., and Chang, J.T. (2008), “A Spatio-Temporal Methodology for Real-time Biosurveillance,” Quality Engineering, 20, 465–477.
-
(2008)
Quality Engineering
, vol.20
, pp. 465-477
-
-
Fricker, R.D.1
Chang, J.T.2
-
11
-
-
33745841370
-
Variational Bayesian Multinomial Probit Regression
-
Girolami, M., and Rogers, S. (2006), “Variational Bayesian Multinomial Probit Regression,” Neural Computation, 18, 1790–1817.
-
(2006)
Neural Computation
, vol.18
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
12
-
-
0003498504
-
-
San Diego, California: Academic Press
-
Gradshteyn, I.S., and Ryzhik, I.M. (1994), Tables of Integrals, Series, and Products (5th ed.), San Diego, California: Academic Press.
-
(1994)
Tables of Integrals, Series, and Products (5th ed.)
-
-
Gradshteyn, I.S.1
Ryzhik, I.M.2
-
13
-
-
84859858172
-
Bayesian Hyper Lassos With Non-convex Penalization
-
Griffin, J.E., and Brown, P.J. (2011), “Bayesian Hyper Lassos With Non-convex Penalization,” Australian and New Zealand Journal of Statistics, 53, 423–442.
-
(2011)
Australian and New Zealand Journal of Statistics
, vol.53
, pp. 423-442
-
-
Griffin, J.E.1
Brown, P.J.2
-
15
-
-
85162005069
-
Online Learning for Latent Dirichlet Allocation
-
Lafferty J., Williams C. K.I., Shawe-Taylor J., Zemel R.S., Culotta A., (eds), Vancouver, Canada: Neural Information Processing Systems Foundation
-
Hoffman, M., Blei, D., and Bach, F. (2010), “Online Learning for Latent Dirichlet Allocation,” in Advances in Neural Information Processing Systems 23, eds. J. Lafferty, C. K.I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, Vancouver, Canada: Neural Information Processing Systems Foundation, pp. 856–864.
-
(2010)
Advances in Neural Information Processing Systems 23
, pp. 856-864
-
-
Hoffman, M.1
Blei, D.2
Bach, F.3
-
16
-
-
84878526187
-
Simple Marginally Noninformative Prior Distributions for Covariance Matrices
-
Huang, A., and Wand, M.P. (2013), “Simple Marginally Noninformative Prior Distributions for Covariance Matrices,” Bayesian Analysis, 2, Number 2, 439–452.
-
(2013)
Bayesian Analysis
, vol.2
, pp. 439-452
-
-
Huang, A.1
Wand, M.P.2
-
17
-
-
0042685161
-
Bayesian Parameter Estimation via Variational Methods
-
Jaakkola, T.S., and Jordan, M.I. (2000), “Bayesian Parameter Estimation via Variational Methods,” Statistics and Computing, 10, 25–37.
-
(2000)
Statistics and Computing
, vol.10
, pp. 25-37
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
18
-
-
33846383343
-
Modelling Concurrency of Events in Online Auctions via Spatiotemporal Semiparametric Models
-
Jank, W., and Shmueli, G. (2007), “Modelling Concurrency of Events in Online Auctions via Spatiotemporal Semiparametric Models,” Applied Statistics, 56, 1–27.
-
(2007)
Applied Statistics
, vol.56
, pp. 1-27
-
-
Jank, W.1
Shmueli, G.2
-
19
-
-
18444410406
-
Empirical Bayes Selection of Wavelet Thresholds
-
Johnstone, I.M., and Silverman, B.W. (2005), “Empirical Bayes Selection of Wavelet Thresholds,” The Annals of Statistics, 33, 1700–1752.
-
(2005)
The Annals of Statistics
, vol.33
, pp. 1700-1752
-
-
Johnstone, I.M.1
Silverman, B.W.2
-
20
-
-
80255126148
-
A Hierarchical Model for Real-time Monitoring of Variation in Risk of Non-Specific Gastro-intestinal Infections
-
Kaimi, I., and Diggle, P.J. (2011), “A Hierarchical Model for Real-time Monitoring of Variation in Risk of Non-Specific Gastro-intestinal Infections,” Epidemiology and Infection, 139, 1854–1862.
-
(2011)
Epidemiology and Infection
, vol.139
, pp. 1854-1862
-
-
Kaimi, I.1
Diggle, P.J.2
-
21
-
-
0141575677
-
Geoadditive Models
-
Kammann, E.E., and Wand, M.P. (2003), “Geoadditive Models,” Journal of the Royal Statistical Society, Series C, 52, 1–18.
-
(2003)
Journal of the Royal Statistical Society, Series C
, vol.52
, pp. 1-18
-
-
Kammann, E.E.1
Wand, M.P.2
-
22
-
-
0021190397
-
Almost Everywhere Convergence of a Recursive Regression Function Estimate and Classification
-
Krzyzak, A., and Pawlak, M. (1984), “Almost Everywhere Convergence of a Recursive Regression Function Estimate and Classification,” IEEE Transactions on Information Theory, IT-30, 91–93.
-
(1984)
IEEE Transactions on Information Theory
, vol.IT-30
, pp. 91-93
-
-
Krzyzak, A.1
Pawlak, M.2
-
23
-
-
64149115569
-
Sparse Online Learning Via Truncated Gradient
-
Langford, J., Li, L., and Zhang, T. (2009), “Sparse Online Learning Via Truncated Gradient,” Journal of Machine Learning Research, 10, 777–801.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 777-801
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
24
-
-
0001044972
-
Finding the Observed Information Matrix When Using the EM Algorithm
-
Louis, T.A. (1982), “Finding the Observed Information Matrix When Using the EM Algorithm,” Journal of the Royal Statistical Society, Series B, 44, 226–233.
-
(1982)
Journal of the Royal Statistical Society, Series B
, vol.44
, pp. 226-233
-
-
Louis, T.A.1
-
26
-
-
0003646026
-
-
New York: Wiley
-
McCulloch, C.E., Searle, S.R., and Neuhaus, J.M. (2008), Generalized, Linear, and Mixed Models (2nd ed.), New York: Wiley.
-
(2008)
Generalized, Linear, and Mixed Models (2nd ed.)
-
-
McCulloch, C.E.1
Searle, S.R.2
Neuhaus, J.M.3
-
27
-
-
84878567859
-
Variational Inference for Marginal Longitudinal Semiparametric Regression
-
Menictas, M., and Wand, M.P. (2013), “Variational Inference for Marginal Longitudinal Semiparametric Regression,” Stat, 2, 61–71.
-
(2013)
Stat
, vol.2
, pp. 61-71
-
-
Menictas, M.1
Wand, M.P.2
-
28
-
-
84865387869
-
Developing Systems for Real-time Streaming Analysis
-
Michalak, S., DuBois, A., DuBois, D., Wiel, S., and Hogden, J. (2012), “Developing Systems for Real-time Streaming Analysis,” Journal of Computational and Graphical Statistics, 21, 561–580.
-
(2012)
Journal of Computational and Graphical Statistics
, vol.21
, pp. 561-580
-
-
Michalak, S.1
DuBois, A.2
DuBois, D.3
Wiel, S.4
Hogden, J.5
-
29
-
-
84904964529
-
-
Neville, S. E., Ormerod, J. T., and Wand, M. P. (2013), “Mean Field Variational Bayes for Continuous Sparse Signal Shrinkage: Pitfalls and Remedies,”. available at matt-wand.utsacademics.info/papers.html.
-
(2013)
“Mean Field Variational Bayes for Continuous Sparse Signal Shrinkage: Pitfalls and Remedies,”
-
-
Neville, S.E.1
Ormerod, J.T.2
Wand, M.P.3
-
30
-
-
33644857556
-
An Incremental EM-based Learning Approach for Online Prediction of Hospital Resource Utilization
-
Ng, S.-K., McLachlan, G.J., and Lee, A.H. (2006), “An Incremental EM-based Learning Approach for Online Prediction of Hospital Resource Utilization,” Artificial Intelligence in Medicine, 36, 257–267.
-
(2006)
Artificial Intelligence in Medicine
, vol.36
, pp. 257-267
-
-
Ng, S.-K.1
McLachlan, G.J.2
Lee, A.H.3
-
31
-
-
77952563168
-
Explaining Variational Approximations
-
Ormerod, J.T., and Wand, M.P. (2010), “Explaining Variational Approximations,” The American Statistician, 64, 140–153.
-
(2010)
The American Statistician
, vol.64
, pp. 140-153
-
-
Ormerod, J.T.1
Wand, M.P.2
-
32
-
-
0012891890
-
-
New York: Cambridge University Press
-
Ruppert, D., Wand, M.P., and Carroll, R.J. (2003), Semiparametric Regression, New York: Cambridge University Press.
-
(2003)
Semiparametric Regression
-
-
Ruppert, D.1
Wand, M.P.2
Carroll, R.J.3
-
33
-
-
84884959104
-
Semiparametric Regression During 2003–2007
-
Ruppert, D., Wand, M.P., and Carroll, R.J. (2009), “Semiparametric Regression During 2003–2007,” Electronic Journal of Statistics, 3, 1193–1256.
-
(2009)
Electronic Journal of Statistics
, vol.3
, pp. 1193-1256
-
-
Ruppert, D.1
Wand, M.P.2
Carroll, R.J.3
-
35
-
-
38949101400
-
Streamlined Variance Calculations for Semiparametric Mixed Models
-
Smith, A. D. A. C., and Wand, M.P. (2008), “Streamlined Variance Calculations for Semiparametric Mixed Models,” Statistics in Medicine, 27, 435–448.
-
(2008)
Statistics in Medicine
, vol.27
, pp. 435-448
-
-
Smith, A.D.A.C.1
Wand, M.P.2
-
36
-
-
84925943653
-
-
unpublished manuscript
-
Tchumtchoua, S., Dunson, D. B., and Morris, J. S. (2012), “Online Variational Bayes Inference for High-dimensional Correlated Data,”. unpublished manuscript. Available at www.stat.duke.edu/∼dunson/ submitted.html.
-
(2012)
“Online Variational Bayes Inference for High-dimensional Correlated Data,”
-
-
Tchumtchoua, S.1
Dunson, D.B.2
Morris, J.S.3
-
37
-
-
65749118363
-
Graphical Models, Exponential Families, and Variational Inference
-
Wainwright, M.J., and Jordan, M.I. (2008), “Graphical Models, Exponential Families, and Variational Inference,” Foundation and Trends in Machine Learning, 1, 1–305.
-
(2008)
Foundation and Trends in Machine Learning
, vol.1
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
40
-
-
47249158963
-
On Semiparametric Regression With O’Sullivan Penalized Splines
-
Wand, M.P., and Ormerod, J.T. (2008), “On Semiparametric Regression With O’Sullivan Penalized Splines,” Australian and New Zealand Journal of Statistics, 50, 179–198.
-
(2008)
Australian and New Zealand Journal of Statistics
, vol.50
, pp. 179-198
-
-
Wand, M.P.1
Ormerod, J.T.2
-
41
-
-
84859836564
-
Penalized Wavelets: Embedding Wavelets Into Semiparametric Regression
-
Wand, M.P., and Ormerod, J.T. (2011), “Penalized Wavelets: Embedding Wavelets Into Semiparametric Regression,” Electronic Journal of Statistics, 5, 1654–1717.
-
(2011)
Electronic Journal of Statistics
, vol.5
, pp. 1654-1717
-
-
Wand, M.P.1
Ormerod, J.T.2
-
42
-
-
84872537516
-
Online Variational Inference for the Hierarchical Dirichlet Process,
-
Fort Lauderdale, FL, USA
-
Wang, C., Paisley, J., and Blei, D.M. (2011), “Online Variational Inference for the Hierarchical Dirichlet Process,” in International Conference on Artificial Intelligence and Statistics, 2011,. Fort Lauderdale, FL, USA.
-
(2011)
International Conference on Artificial Intelligence and Statistics, 2011
-
-
Wang, C.1
Paisley, J.2
Blei, D.M.3
-
43
-
-
62149086004
-
Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations
-
Cowell R.G., Ghahramani Z., (eds), Barbados: Society for Artificial Intelligence and Statistics
-
Wang, B., and Titterington, D.M. (2005), “Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations,” in Proceedings of the 10th International Workshop on Artificial Intelligence, eds. R.G. Cowell and Z. Ghahramani, Barbados: Society for Artificial Intelligence and Statistics, pp. 373–380.
-
(2005)
Proceedings of the 10th International Workshop on Artificial Intelligence
, pp. 373-380
-
-
Wang, B.1
Titterington, D.M.2
-
44
-
-
33846700066
-
A Comparison of Mixed Model Splines for Curve Fitting
-
Welham, S.J., Cullis, B.R., Kenward, M.G., and Thompson, R. (2007), “A Comparison of Mixed Model Splines for Curve Fitting,” Australian and New Zealand Journal of Statistics, 49, 1–23.
-
(2007)
Australian and New Zealand Journal of Statistics
, vol.49
, pp. 1-23
-
-
Welham, S.J.1
Cullis, B.R.2
Kenward, M.G.3
Thompson, R.4
-
45
-
-
0000614009
-
Asymptotically Optimal Discriminant Functions for Pattern Recognition
-
Wolverton, C.T., and Wagner, T.J. (1969), “Asymptotically Optimal Discriminant Functions for Pattern Recognition,” IEEE Transactions on Information Theory, IT-15, 258–265.
-
(1969)
IEEE Transactions on Information Theory
, vol.IT-15
, pp. 258-265
-
-
Wolverton, C.T.1
Wagner, T.J.2
-
47
-
-
0002098808
-
Sequential Estimation of a Continuous Probability Density Function and Model
-
Yamato, H. (1971), “Sequential Estimation of a Continuous Probability Density Function and Model,” Bulletin of Mathematical Statistics, 14, 1–12.
-
(1971)
Bulletin of Mathematical Statistics
, vol.14
, pp. 1-12
-
-
Yamato, H.1
-
48
-
-
14344259207
-
Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms
-
Brodley C.E., (ed), Banff, Canada: The International Machine Learning Society
-
Zhang, T. (2004), “Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms,” in Proceedings of the Twenty-First International Conference on Machine Learning, ed. C.E. Brodley, Banff, Canada: The International Machine Learning Society, pp. 919–926.
-
(2004)
Proceedings of the Twenty-First International Conference on Machine Learning
, pp. 919-926
-
-
Zhang, T.1
-
49
-
-
33745929657
-
General Design Bayesian Generalized Linear Mixed Models
-
Zhao, Y., Staudenmayer, J., Coull, B.A., and Wand, M.P. (2006), “General Design Bayesian Generalized Linear Mixed Models,” Statistical Science, 21, 35–51.
-
(2006)
Statistical Science
, vol.21
, pp. 35-51
-
-
Zhao, Y.1
Staudenmayer, J.2
Coull, B.A.3
Wand, M.P.4
|