메뉴 건너뛰기




Volumn 23, Issue 3, 2014, Pages 589-615

Real-Time Semiparametric Regression

Author keywords

Approximate Bayesian inference; Generalized additive models; Mean field variational Bayes; Mixed models; Online variational Bayes; Penalized splines; Wavelets

Indexed keywords


EID: 84904979938     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1080/10618600.2013.810150     Document Type: Article
Times cited : (36)

References (49)
  • 2
    • 84878094378 scopus 로고    scopus 로고
    • Generalized Double Pareto Shrinkage
    • Armagan, A., Dunson, D.B., and Lee, J. (2013), “Generalized Double Pareto Shrinkage,” Statistica Sinica, 23, 119–143.
    • (2013) Statistica Sinica , vol.23 , pp. 119-143
    • Armagan, A.1    Dunson, D.B.2    Lee, J.3
  • 5
    • 77952811536 scopus 로고    scopus 로고
    • The Horseshoe Estimator for Sparse Signals
    • Carvalho, C.M., Polson, N.G., and Scott, J.G. (2010), “The Horseshoe Estimator for Sparse Signals,” Biometrika, 97, 465–480.
    • (2010) Biometrika , vol.97 , pp. 465-480
    • Carvalho, C.M.1    Polson, N.G.2    Scott, J.G.3
  • 6
    • 35148829045 scopus 로고    scopus 로고
    • Mean-field Variational Approximate Bayesian Inference for Latent Variable Models
    • Consonni, G., and Marin, J.-M. (2007), “Mean-field Variational Approximate Bayesian Inference for Latent Variable Models,” Computational Statistics and Data Analysis, 52, 790–798.
    • (2007) Computational Statistics and Data Analysis , vol.52 , pp. 790-798
    • Consonni, G.1    Marin, J.-M.2
  • 9
    • 80054689997 scopus 로고    scopus 로고
    • Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    • Faes, C., Ormerod, J.T., and Wand, M.P. (2011), “Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data,” Journal of the American Statistical Association, 106, 959–971.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 959-971
    • Faes, C.1    Ormerod, J.T.2    Wand, M.P.3
  • 10
    • 52349093473 scopus 로고    scopus 로고
    • A Spatio-Temporal Methodology for Real-time Biosurveillance
    • Fricker, R.D., and Chang, J.T. (2008), “A Spatio-Temporal Methodology for Real-time Biosurveillance,” Quality Engineering, 20, 465–477.
    • (2008) Quality Engineering , vol.20 , pp. 465-477
    • Fricker, R.D.1    Chang, J.T.2
  • 11
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian Multinomial Probit Regression
    • Girolami, M., and Rogers, S. (2006), “Variational Bayesian Multinomial Probit Regression,” Neural Computation, 18, 1790–1817.
    • (2006) Neural Computation , vol.18 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 15
    • 85162005069 scopus 로고    scopus 로고
    • Online Learning for Latent Dirichlet Allocation
    • Lafferty J., Williams C. K.I., Shawe-Taylor J., Zemel R.S., Culotta A., (eds), Vancouver, Canada: Neural Information Processing Systems Foundation
    • Hoffman, M., Blei, D., and Bach, F. (2010), “Online Learning for Latent Dirichlet Allocation,” in Advances in Neural Information Processing Systems 23, eds. J. Lafferty, C. K.I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, Vancouver, Canada: Neural Information Processing Systems Foundation, pp. 856–864.
    • (2010) Advances in Neural Information Processing Systems 23 , pp. 856-864
    • Hoffman, M.1    Blei, D.2    Bach, F.3
  • 16
    • 84878526187 scopus 로고    scopus 로고
    • Simple Marginally Noninformative Prior Distributions for Covariance Matrices
    • Huang, A., and Wand, M.P. (2013), “Simple Marginally Noninformative Prior Distributions for Covariance Matrices,” Bayesian Analysis, 2, Number 2, 439–452.
    • (2013) Bayesian Analysis , vol.2 , pp. 439-452
    • Huang, A.1    Wand, M.P.2
  • 17
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian Parameter Estimation via Variational Methods
    • Jaakkola, T.S., and Jordan, M.I. (2000), “Bayesian Parameter Estimation via Variational Methods,” Statistics and Computing, 10, 25–37.
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 18
    • 33846383343 scopus 로고    scopus 로고
    • Modelling Concurrency of Events in Online Auctions via Spatiotemporal Semiparametric Models
    • Jank, W., and Shmueli, G. (2007), “Modelling Concurrency of Events in Online Auctions via Spatiotemporal Semiparametric Models,” Applied Statistics, 56, 1–27.
    • (2007) Applied Statistics , vol.56 , pp. 1-27
    • Jank, W.1    Shmueli, G.2
  • 19
    • 18444410406 scopus 로고    scopus 로고
    • Empirical Bayes Selection of Wavelet Thresholds
    • Johnstone, I.M., and Silverman, B.W. (2005), “Empirical Bayes Selection of Wavelet Thresholds,” The Annals of Statistics, 33, 1700–1752.
    • (2005) The Annals of Statistics , vol.33 , pp. 1700-1752
    • Johnstone, I.M.1    Silverman, B.W.2
  • 20
    • 80255126148 scopus 로고    scopus 로고
    • A Hierarchical Model for Real-time Monitoring of Variation in Risk of Non-Specific Gastro-intestinal Infections
    • Kaimi, I., and Diggle, P.J. (2011), “A Hierarchical Model for Real-time Monitoring of Variation in Risk of Non-Specific Gastro-intestinal Infections,” Epidemiology and Infection, 139, 1854–1862.
    • (2011) Epidemiology and Infection , vol.139 , pp. 1854-1862
    • Kaimi, I.1    Diggle, P.J.2
  • 22
    • 0021190397 scopus 로고
    • Almost Everywhere Convergence of a Recursive Regression Function Estimate and Classification
    • Krzyzak, A., and Pawlak, M. (1984), “Almost Everywhere Convergence of a Recursive Regression Function Estimate and Classification,” IEEE Transactions on Information Theory, IT-30, 91–93.
    • (1984) IEEE Transactions on Information Theory , vol.IT-30 , pp. 91-93
    • Krzyzak, A.1    Pawlak, M.2
  • 24
    • 0001044972 scopus 로고
    • Finding the Observed Information Matrix When Using the EM Algorithm
    • Louis, T.A. (1982), “Finding the Observed Information Matrix When Using the EM Algorithm,” Journal of the Royal Statistical Society, Series B, 44, 226–233.
    • (1982) Journal of the Royal Statistical Society, Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 27
    • 84878567859 scopus 로고    scopus 로고
    • Variational Inference for Marginal Longitudinal Semiparametric Regression
    • Menictas, M., and Wand, M.P. (2013), “Variational Inference for Marginal Longitudinal Semiparametric Regression,” Stat, 2, 61–71.
    • (2013) Stat , vol.2 , pp. 61-71
    • Menictas, M.1    Wand, M.P.2
  • 30
    • 33644857556 scopus 로고    scopus 로고
    • An Incremental EM-based Learning Approach for Online Prediction of Hospital Resource Utilization
    • Ng, S.-K., McLachlan, G.J., and Lee, A.H. (2006), “An Incremental EM-based Learning Approach for Online Prediction of Hospital Resource Utilization,” Artificial Intelligence in Medicine, 36, 257–267.
    • (2006) Artificial Intelligence in Medicine , vol.36 , pp. 257-267
    • Ng, S.-K.1    McLachlan, G.J.2    Lee, A.H.3
  • 31
    • 77952563168 scopus 로고    scopus 로고
    • Explaining Variational Approximations
    • Ormerod, J.T., and Wand, M.P. (2010), “Explaining Variational Approximations,” The American Statistician, 64, 140–153.
    • (2010) The American Statistician , vol.64 , pp. 140-153
    • Ormerod, J.T.1    Wand, M.P.2
  • 35
    • 38949101400 scopus 로고    scopus 로고
    • Streamlined Variance Calculations for Semiparametric Mixed Models
    • Smith, A. D. A. C., and Wand, M.P. (2008), “Streamlined Variance Calculations for Semiparametric Mixed Models,” Statistics in Medicine, 27, 435–448.
    • (2008) Statistics in Medicine , vol.27 , pp. 435-448
    • Smith, A.D.A.C.1    Wand, M.P.2
  • 37
  • 41
    • 84859836564 scopus 로고    scopus 로고
    • Penalized Wavelets: Embedding Wavelets Into Semiparametric Regression
    • Wand, M.P., and Ormerod, J.T. (2011), “Penalized Wavelets: Embedding Wavelets Into Semiparametric Regression,” Electronic Journal of Statistics, 5, 1654–1717.
    • (2011) Electronic Journal of Statistics , vol.5 , pp. 1654-1717
    • Wand, M.P.1    Ormerod, J.T.2
  • 43
    • 62149086004 scopus 로고    scopus 로고
    • Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations
    • Cowell R.G., Ghahramani Z., (eds), Barbados: Society for Artificial Intelligence and Statistics
    • Wang, B., and Titterington, D.M. (2005), “Inadequacy of Interval Estimates Corresponding to Variational Bayesian Approximations,” in Proceedings of the 10th International Workshop on Artificial Intelligence, eds. R.G. Cowell and Z. Ghahramani, Barbados: Society for Artificial Intelligence and Statistics, pp. 373–380.
    • (2005) Proceedings of the 10th International Workshop on Artificial Intelligence , pp. 373-380
    • Wang, B.1    Titterington, D.M.2
  • 45
    • 0000614009 scopus 로고
    • Asymptotically Optimal Discriminant Functions for Pattern Recognition
    • Wolverton, C.T., and Wagner, T.J. (1969), “Asymptotically Optimal Discriminant Functions for Pattern Recognition,” IEEE Transactions on Information Theory, IT-15, 258–265.
    • (1969) IEEE Transactions on Information Theory , vol.IT-15 , pp. 258-265
    • Wolverton, C.T.1    Wagner, T.J.2
  • 47
    • 0002098808 scopus 로고
    • Sequential Estimation of a Continuous Probability Density Function and Model
    • Yamato, H. (1971), “Sequential Estimation of a Continuous Probability Density Function and Model,” Bulletin of Mathematical Statistics, 14, 1–12.
    • (1971) Bulletin of Mathematical Statistics , vol.14 , pp. 1-12
    • Yamato, H.1
  • 48
    • 14344259207 scopus 로고    scopus 로고
    • Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms
    • Brodley C.E., (ed), Banff, Canada: The International Machine Learning Society
    • Zhang, T. (2004), “Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms,” in Proceedings of the Twenty-First International Conference on Machine Learning, ed. C.E. Brodley, Banff, Canada: The International Machine Learning Society, pp. 919–926.
    • (2004) Proceedings of the Twenty-First International Conference on Machine Learning , pp. 919-926
    • Zhang, T.1
  • 49
    • 33745929657 scopus 로고    scopus 로고
    • General Design Bayesian Generalized Linear Mixed Models
    • Zhao, Y., Staudenmayer, J., Coull, B.A., and Wand, M.P. (2006), “General Design Bayesian Generalized Linear Mixed Models,” Statistical Science, 21, 35–51.
    • (2006) Statistical Science , vol.21 , pp. 35-51
    • Zhao, Y.1    Staudenmayer, J.2    Coull, B.A.3    Wand, M.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.